## An $L^p$ a priori estimate for the Tricomi equation in the upper half space

HTML articles powered by AMS MathViewer

- by Jong Uhn Kim PDF
- Trans. Amer. Math. Soc.
**351**(1999), 4611-4628 Request permission

## Abstract:

We establish an $L^{p}$ a priori estimate for the Tricomi equation. Our main tool is Mihlin’s multiplier theorem combined with well-known estimates of the Newtonian potential.## References

- Jöran Bergh and Jörgen Löfström,
*Interpolation spaces. An introduction*, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR**0482275** - Louis Boutet de Monvel,
*Hypoelliptic operators with double characteristics and related pseudo-differential operators*, Comm. Pure Appl. Math.**27**(1974), 585–639. MR**370271**, DOI 10.1002/cpa.3160270502 - Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**, DOI 10.1007/978-3-642-61798-0 - Glushko, V.P. and Savchenko, Yu.B., Higher-order degenerate elliptic equations: spaces, operators, boundary-value problems, J. Soviet Math. Vol 39, No 6, pp. 3088-3148, 1987.
- Lars Hörmander,
*The analysis of linear partial differential operators. I*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR**717035**, DOI 10.1007/978-3-642-96750-4 - Serge Levendorskii,
*Degenerate elliptic equations*, Mathematics and its Applications, vol. 258, Kluwer Academic Publishers Group, Dordrecht, 1993. MR**1247957**, DOI 10.1007/978-94-017-1215-6 - O. A. Oleĭnik and E. V. Radkevič,
*Second order equations with nonnegative characteristic form*, Plenum Press, New York-London, 1973. Translated from the Russian by Paul C. Fife. MR**0457908** - Fausto Segàla,
*Parametrices for operators of Tricomi type*, Ann. Mat. Pura Appl. (4)**140**(1985), 285–299 (English, with Italian summary). MR**807641**, DOI 10.1007/BF01776853 - Fausto Segàla,
*Parametrices for a class of differential operators with multiple characteristics*, Ann. Mat. Pura Appl. (4)**146**(1987), 311–336. MR**916697**, DOI 10.1007/BF01762369 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - H. Triebel,
*Interpolation theory, function spaces, differential operators*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR**500580** - M. I. Višik and V. V. Grušin,
*Boundary value problems for elliptic equations which are degenerate on the boundary of the domain*, Mat. Sb. (N.S.)**80 (122)**(1969), 455–491 (Russian). MR**0257562**

## Additional Information

**Jong Uhn Kim**- Affiliation: Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061-0123
- Email: kim@math.vt.edu
- Received by editor(s): December 30, 1996
- Received by editor(s) in revised form: February 10, 1998
- Published electronically: July 19, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**351**(1999), 4611-4628 - MSC (1991): Primary 35J70, 35B45
- DOI: https://doi.org/10.1090/S0002-9947-99-02349-1
- MathSciNet review: 1615987