Arithmetically Buchsbaum divisors on varieties of minimal degree
HTML articles powered by AMS MathViewer
- by Uwe Nagel
- Trans. Amer. Math. Soc. 351 (1999), 4381-4409
- DOI: https://doi.org/10.1090/S0002-9947-99-02357-0
- Published electronically: April 20, 1999
- PDF | Request permission
Abstract:
In this paper we consider integral arithmetically Buchsbaum subschemes of projective space. First we show that arithmetical Buchsbaum varieties of sufficiently large degree have maximal Castelnuovo-Mumford regularity if and only if they are divisors on a variety of minimal degree. Second we determine all varieties of minimal degree and their divisor classes which contain an integral arithmetically Buchsbaum subscheme. Third we investigate these varieties. In particular, we compute their Hilbert function, cohomology modules and (often) their graded Betti numbers and obtain an existence result for smooth arithmetically Buchsbaum varieties.References
- Edoardo Ballico, On singular curves in the case of positive characteristic, Math. Nachr. 141 (1989), 267–273. MR 1014431, DOI 10.1002/mana.19891410124
- M. Brodmann and U. Nagel, Bounding cohomological Hilbert functions by hyperplane sections, J. Algebra 174 (1995), no. 1, 323–348. MR 1332873, DOI 10.1006/jabr.1995.1130
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- David Eisenbud and Joe Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), no. 1, 15–30. MR 1129837
- David Eisenbud and Joe Harris, On varieties of minimal degree (a centennial account), Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 3–13. MR 927946, DOI 10.1090/pspum/046.1/927946
- David Eisenbud and Jee Koh, Some linear syzygy conjectures, Adv. Math. 90 (1991), no. 1, 47–76. MR 1133475, DOI 10.1016/0001-8708(91)90019-4
- E. Graham Evans and Phillip Griffith, The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. MR 632842, DOI 10.2307/1971296
- L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, DOI 10.1007/BF01398398
- Joe Harris, The genus of space curves, Math. Ann. 249 (1980), no. 3, 191–204. MR 579101, DOI 10.1007/BF01363895
- Joe Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 35–68. MR 616900
- Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Craig Huneke and Bernd Ulrich, General hyperplane sections of algebraic varieties, J. Algebraic Geom. 2 (1993), no. 3, 487–505. MR 1211996
- S. Lvovski, On graded Betti numbers for finite subsets of curves, Preprint, Bonn 1997.
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285
- Uwe Nagel, On the defining equations and syzygies of arithmetically Cohen-Macaulay varieties in arbitrary characteristic, J. Algebra 175 (1995), no. 1, 359–372. MR 1338983, DOI 10.1006/jabr.1995.1191
- U. Nagel, On arithmetically Buchsbaum subschemes and liaison, Habilitationsschrift, Paderborn 1996.
- U. Nagel and Y. Pitteloud, On graded Betti numbers and geometrical properties of projective varieties, The Curves Seminar at Queen’s, Vol. IX (Kingston, ON, 1992/1993) Queen’s Papers in Pure and Appl. Math., vol. 95, Queen’s Univ., Kingston, ON, 1993, pp. Exp. E, 24. MR 1315111
- U. Nagel, P. Schenzel, Degree bounds for generators of cohomology modules and Castelnuovo-Mumford regularity, Nagoya Math. J. (to appear).
- Uwe Nagel and Wolfgang Vogel, Bounds for Castelnuovo’s regularity and the genus of projective varieties, Topics in algebra, Part 2 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 163–183. MR 1171267
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Jürgen Stückrad and Wolfgang Vogel, Castelnuovo bounds for certain subvarieties in $\textbf {P}^n$, Math. Ann. 276 (1987), no. 2, 341–352. MR 870972, DOI 10.1007/BF01450748
- Jürgen Stückrad and Wolfgang Vogel, Buchsbaum rings and applications, Springer-Verlag, Berlin, 1986. An interaction between algebra, geometry and topology. MR 881220, DOI 10.1007/978-3-662-02500-0
- Robert Treger, On equations defining arithmetically Cohen-Macaulay schemes. I, Math. Ann. 261 (1982), no. 2, 141–153. MR 675731, DOI 10.1007/BF01456215
- Ngô Viêt Trung and Giuseppe Valla, Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties, Math. Ann. 281 (1988), no. 2, 209–218. MR 949828, DOI 10.1007/BF01458428
Bibliographic Information
- Uwe Nagel
- Affiliation: Fachbereich Mathematik und Informatik, Universität-Gesamthochschule Paderborn, D–33095 Paderborn, Germany
- MR Author ID: 248652
- Email: uwen@uni-paderborn.de
- Received by editor(s): August 27, 1997
- Published electronically: April 20, 1999
- Additional Notes: The material of this paper is part of the author’s Habilitationsschrift [On arithmetically Buchsbaum subschemes and liaison, Habilitationsschrift, Paderborn 1996].
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 4381-4409
- MSC (1991): Primary 14M05; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9947-99-02357-0
- MathSciNet review: 1615938