Admissibility of Weights on Non-normed $*$-Algebras
HTML articles powered by AMS MathViewer
- by S. J. Bhatt, A. Inoue and H. Ogi
- Trans. Amer. Math. Soc. 351 (1999), 4629-4656
- DOI: https://doi.org/10.1090/S0002-9947-99-02414-9
- Published electronically: April 12, 1999
- PDF | Request permission
Abstract:
The notion of weights on (topological) $*$-algebras is defined and studied. The primary purpose is to define the notions of admissibility and approximate admissibility of weights, and to investigate when a weight is admissible or approximately admissible. The results obtained are applied to vector weights and tracial weight on unbounded operator algebras, as well as to weights on smooth subalgebras of a C$^*$-algebra.References
- G. R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15 (1965), 399–421. MR 176344, DOI 10.1112/plms/s3-15.1.399
- G. R. Allan, On a class of locally convex algebras, Proc. London Math. Soc. (3) 17 (1967), 91–114. MR 205102, DOI 10.1112/plms/s3-17.1.91
- J.-P. Antoine, H. Ogi, A. Inoue, and C. Trapani, Standard generalized vectors in the space of Hilbert-Schmidt operators, Ann. Inst. H. Poincaré Phys. Théor. 63 (1995), no. 2, 177–210 (English, with English and French summaries). MR 1357495
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- Bruce A. Barnes, The properties $^{\ast }$-regularity and uniqueness of $C^{\ast }$-norm in a general $^{\ast }$-algebra, Trans. Amer. Math. Soc. 279 (1983), no. 2, 841–859. MR 709587, DOI 10.1090/S0002-9947-1983-0709587-7
- Subhash J. Bhatt, Representability of positive functionals on abstract star algebras without identity with applications to locally convex $^{\ast }$-algebras, Yokohama Math. J. 29 (1981), no. 1, 7–16. MR 649234
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- A. H. Chamseddine, J. Fröhlich, and O. Grandjean, The gravitational sector in the Connes-Lott formulation of the standard model, J. Math. Phys. 36 (1995), no. 11, 6255–6275. MR 1355907, DOI 10.1063/1.531243
- Fabio Cipriani, Daniele Guido, and Sergio Scarlatti, A remark on trace properties of $K$-cycles, J. Operator Theory 35 (1996), no. 1, 179–189. MR 1389649
- Alain Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (1995), no. 11, 6194–6231. MR 1355905, DOI 10.1063/1.531241
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- P. G. Dixon, Generalized $B^{\ast }$-algebras, Proc. London Math. Soc. (3) 21 (1970), 693–715. MR 278079, DOI 10.1112/plms/s3-21.4.693
- J. M. G. Fell and R. S. Doran, Representations of $^*$-algebras, locally compact groups, and Banach $^*$-algebraic bundles. Vol. 1, Pure and Applied Mathematics, vol. 125, Academic Press, Inc., Boston, MA, 1988. Basic representation theory of groups and algebras. MR 936628
- S. P. Gudder and R. L. Hudson, A noncommutative probability theory, Trans. Amer. Math. Soc. 245 (1978), 1–41. MR 511398, DOI 10.1090/S0002-9947-1978-0511398-0
- Atsushi Inoue, An unbounded generalization of the Tomita-Takesaki theory, Publ. Res. Inst. Math. Sci. 22 (1986), no. 4, 725–765. MR 871264, DOI 10.2977/prims/1195177629
- Atsushi Inoue, $O^*$-algebras in standard system, Math. Nachr. 172 (1995), 171–190. MR 1330628, DOI 10.1002/mana.19951720113
- Atsushi Inoue and Witold Karwowski, Cyclic generalized vectors for algebras of unbounded operators, Publ. Res. Inst. Math. Sci. 30 (1994), no. 4, 577–601. MR 1308958, DOI 10.2977/prims/1195165790
- A. Inoue and H. Ogi, Regular weights on algebras of unbounded operators, J. Math. Soc. Japan, 50 (1998), 227-252.
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- Theodore W. Palmer, Spectral algebras, Rocky Mountain J. Math. 22 (1992), no. 1, 293–328. MR 1159960, DOI 10.1216/rmjm/1181072812
- N. Christopher Phillips, Inverse limits of $C^*$-algebras, J. Operator Theory 19 (1988), no. 1, 159–195. MR 950831
- James D. Powell, Representations of locally convex $^{\ast }$-algebras, Proc. Amer. Math. Soc. 44 (1974), 341–346. MR 361803, DOI 10.1090/S0002-9939-1974-0361803-X
- Robert T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85–124. MR 283580
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Konrad Schmüdgen, Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, vol. 37, Birkhäuser Verlag, Basel, 1990. MR 1056697, DOI 10.1007/978-3-0348-7469-4
- Kunimichi Takesue, Standard representations induced by positive linear functionals, Mem. Fac. Sci. Kyushu Univ. Ser. A 37 (1983), no. 2, 211–225. MR 722244, DOI 10.2206/kyushumfs.37.211
Bibliographic Information
- S. J. Bhatt
- Affiliation: Department of Mathematics Sardar Patel University Vallabh Vidyanagar 388120 Gujarat, India
- A. Inoue
- Email: sm010888@ssat.fukuoka-u.ac.jp
- H. Ogi
- Affiliation: Department of Applied Mathematics, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, 814-80 Japan
- Email: sm037255@ssat.fukuoka-u.ac.jp
- Received by editor(s): February 23, 1997
- Published electronically: April 12, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 4629-4656
- MSC (1991): Primary 46K10, 47D40
- DOI: https://doi.org/10.1090/S0002-9947-99-02414-9
- MathSciNet review: 1637133