The $\overline {\partial }$ problem on domains with piecewise smooth boundaries with applications
HTML articles powered by AMS MathViewer
- by Joachim Michel and Mei-Chi Shaw
- Trans. Amer. Math. Soc. 351 (1999), 4365-4380
- DOI: https://doi.org/10.1090/S0002-9947-99-02519-2
- Published electronically: July 9, 1999
- PDF | Request permission
Abstract:
Let $\Omega$ be a bounded domain in $\mathbb C^n$ such that $\Omega$ has piecewise smooth boudnary. We discuss the solvability of the Cauchy-Riemann equation \begin{equation*} \overline {\partial }u=\alpha \quad \text {in}\quad \Omega \tag {0.1} \end{equation*} where $\alpha$ is a smooth $\overline {\partial }$-closed $(p,q)$ form with coefficients $C^\infty$ up to the bundary of $\Omega$, $0\le p\le n$ and $1\le q\le n$. In particular, Equation (0.1) is solvable with $u$ smooth up to the boundary (for appropriate degree $q)$ if $\Omega$ satisfies one of the following conditions:
-
[i)] $\Omega$ is the transversal intersection of bounded smooth pseudoconvex domains.
-
[ii)] $\Omega =\Omega _1\setminus \overline \Omega _2$ where $\Omega _2$ is the union of bounded smooth pseudoconvex domains and $\Omega _1$ is a pseudoconvex convex domain with a piecewise smooth boundary.
-
[iii)] $\Omega =\Omega _1\setminus \overline {\Omega }_2$ where $\Omega _2$ is the intersection of bounded smooth pseudoconvex domains and $\Omega _1$ is a pseudoconvex domain with a piecewise smooth boundary.
The solvability of Equation (0.1) with solutions smooth up to the boundary can be used to obtain the local solvability for $\overline {\partial }_b$ on domains with piecewise smooth boundaries in a pseudoconvex manifold.
References
- David E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math. 168 (1992), no. 1-2, 1–10. MR 1149863, DOI 10.1007/BF02392975
- Harold P. Boas and Emil J. Straube, Sobolev estimates for the $\overline \partial$-Neumann operator on domains in $\textbf {C}^n$ admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), no. 1, 81–88. MR 1086815, DOI 10.1007/BF02571327
- David Catlin, Subelliptic estimates for the $\overline \partial$-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131–191. MR 898054, DOI 10.2307/1971347
- Jacques Chaumat and Anne-Marie Chollet, Noyaux pour résoudre l’equation $\overline \partial$ dans des classes ultradifférentiables sur des compacts irréguliers de $\mathbf C^n$, Several complex variables (Stockholm, 1987/1988) Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 205–226 (French). MR 1207862
- Michael Christ, Global $C^\infty$ irregularity of the $\overline \partial$-Neumann problem for worm domains, J. Amer. Math. Soc. 9 (1996), no. 4, 1171–1185. MR 1370592, DOI 10.1090/S0894-0347-96-00213-5
- Klas Diederich and John Erik Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129–141. MR 437806, DOI 10.1007/BF01390105
- Alain Dufresnoy, Sur l’opérateur $d^{\prime \prime }$ et les fonctions différentiables au sens de Whitney, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xvi, 229–238 (French, with English summary). MR 526786
- Hans Grauert and Ingo Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\bar \partial f=\alpha$ im Bereich der beschränkten Formen, Rice Univ. Stud. 56 (1970), no. 2, 29–50 (1971) (German). MR 273057
- G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Mat. Sb. (N.S.) 78 (120) (1969), 611–632 (Russian). MR 0249660
- G. M. Henkin, A uniform estimate for the solution of the $\bar \partial$-problem in a Weil region, Uspehi Mat. Nauk 26 (1971), no. 3(159), 211–212 (Russian). MR 0294685
- G. M. Henkin, H. Lewy’s equation and analysis on pseudoconvex manifolds, Uspehi Mat. Nauk 32 (1977), no. 3(195), 57–118, 247 (Russian). MR 0454067
- Gennadi Henkin and Jürgen Leiterer, Theory of functions on complex manifolds, Monographs in Mathematics, vol. 79, Birkhäuser Verlag, Basel, 1984. MR 774049
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Michael Hortmann, Über die Lösbarkeit der $\bar \partial$-Gleichung auf Ringgebieten mit Hilfe von $L^{p}$-, ${\cal C}^{k}$- und ${\cal D}$-stetigen Integraloperatoren, Math. Ann. 223 (1976), no. 2, 139–156 (German). MR 422688, DOI 10.1007/BF01360878
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- J. J. Kohn, Global regularity for $\bar \partial$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273–292. MR 344703, DOI 10.1090/S0002-9947-1973-0344703-4
- J. J. Kohn, Subellipticity of the $\bar \partial$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, DOI 10.1007/BF02395058
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Lan Ma and Joachim Michel, Local regularity for the tangential Cauchy-Riemann complex, J. Reine Angew. Math. 442 (1993), 63–90. MR 1234836, DOI 10.1515/crll.1993.442.63
- Joachim Michel, Randregularität des $\overline \partial$-Problems für stückweise streng pseudokonvexe Gebiete in $\textbf {C}^n$, Math. Ann. 280 (1988), no. 1, 45–68 (German). MR 928297, DOI 10.1007/BF01474180
- Joachim Michel, Integral representations on weakly pseudoconvex domains, Math. Z. 208 (1991), no. 3, 437–462. MR 1134587, DOI 10.1007/BF02571538
- Joachim Michel and Alessandro Perotti, $C^k$-regularity for the $\overline \partial$-equation on strictly pseudoconvex domains with piecewise smooth boundaries, Math. Z. 203 (1990), no. 3, 415–427. MR 1038709, DOI 10.1007/BF02570747
- Joachim Michel and Alessandro Perotti, $C^k$-regularity for the $\overline \partial$-equation on a piecewise smooth union of strictly pseudoconvex domains in $\textbf {C}^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 4, 483–495. MR 1318769
- Joachim Michel and Mei-Chi Shaw, Subelliptic estimates for the $\overline \partial$-Neumann operator on piecewise smooth strictly pseudoconvex domains, Duke Math. J. 93 (1998), no. 1, 115–128. MR 1620087, DOI 10.1215/S0012-7094-98-09304-8
- Michel, J., Shaw, M.-C., A decomposition problem on weakly pseudoconvex domains, Math. Zeit. 230 (1999), 1–19.
- Michel, J., Shaw, M.-C., $C^{\infty }$-regularity of solutions of the tangential CR-equations on weakly pseudoconvex manifolds, Math. Ann. 311 (1998), 147-162.
- P. L. Poljakov, Banach cohomology of fibered spaces, Uspehi Mat. Nauk 26 (1971), no. 4(160), 243–244 (Russian). MR 0294713
- P. L. Poljakov, Banach cohomology on piecewise strictly pseudoconvex domains, Mat. Sb. (N.S.) 88(130) (1972), 238–255 (Russian). MR 0301238
- R. Michael Range, Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics, vol. 108, Springer-Verlag, New York, 1986. MR 847923, DOI 10.1007/978-1-4757-1918-5
- R. Michael Range and Yum-Tong Siu, Uniform estimates for the $\bar \partial$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325–354. MR 338450, DOI 10.1007/BF01355986
- Mei-Chi Shaw, Global solvability and regularity for $\bar \partial$ on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc. 291 (1985), no. 1, 255–267. MR 797058, DOI 10.1090/S0002-9947-1985-0797058-3
- Mei-Chi Shaw, $L^p$ estimates for local solutions of $\overline \partial _\textrm {b}$ on strongly pseudo-convex CR manifolds, Math. Ann. 288 (1990), no. 1, 35–62. MR 1070923, DOI 10.1007/BF01444520
- Mei-Chi Shaw, Local existence theorems with estimates for $\overline \partial _b$ on weakly pseudo-convex CR manifolds, Math. Ann. 294 (1992), no. 4, 677–700. MR 1190451, DOI 10.1007/BF01934348
- Mei-Chi Shaw, Semi-global existence theorems of $\overline \partial _b$ for $(0,n-2)$ forms on pseudo-convex boundaries in $\textbf {C}^n$, Astérisque 217 (1993), 8, 227–240. Colloque d’Analyse Complexe et Géométrie (Marseille, 1992). MR 1247761
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Vassiliadou, S., Homotopy fomulas for $\overline \partial _{b}$ and subelliptic estimates for the $\overline \partial$-Neumann problem, Thesis, Notre Dame (1997).
Bibliographic Information
- Joachim Michel
- Affiliation: Université du Littoral, Centre Universitaire de la Mi-Voix, F-62228 Calais, France
- Email: michel@lma.univ-littoral.fr
- Mei-Chi Shaw
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- MR Author ID: 160050
- Email: mei-chi.shaw.l@nd.edu
- Received by editor(s): August 11, 1997
- Received by editor(s) in revised form: May 7, 1998
- Published electronically: July 9, 1999
- Additional Notes: Partially supported by NSF grant DMS 98-01091
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 4365-4380
- MSC (1991): Primary 35N05, 35N10, 32F10
- DOI: https://doi.org/10.1090/S0002-9947-99-02519-2
- MathSciNet review: 1675218