A sharp version of Zhang's theorem

on truncating sequences of gradients

Author:
Stefan Müller

Journal:
Trans. Amer. Math. Soc. **351** (1999), 4585-4597

MSC (1991):
Primary 49J45

DOI:
https://doi.org/10.1090/S0002-9947-99-02520-9

Published electronically:
July 21, 1999

MathSciNet review:
1675222

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact and convex set of matrices and let be a sequence in that converges to in the mean, i.e. . I show that there exists a sequence of Lipschitz functions such that and . This refines a result of Kewei Zhang (Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) **19** (1992), 313-326), who showed that one may assume . Applications to gradient Young measures and to a question of Kinderlehrer and Pedregal (Arch. Rational Mech. Anal. **115** (1991), 329-365) regarding the approximation of valued quasiconvex functions by finite ones are indicated. A challenging open problem is whether convexity of can be replaced by quasiconvexity.

**1.**E. Acerbi and N. Fusco, Semincontinuity problems in the calculus of variations,*Arch. Rat. Mech. Anal.***86**(1984), 125-145. MR**85m:49021****2.**E. Acerbi and N. Fusco, An approximation lemma for functions, in:*Material instabilities in continuum mechanics and related mathematical problems*(J.M. Ball, ed.), Oxford UP, 1988, pp. 1-5. MR**89m:46060****3.**J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity,*Arch. Rat. Mech. Anal.***63**(1977), 337-403. MR**57:14788****4.**B. Dacorogna,*Direct methods in the calculus of variations*, Springer, 1989. MR**90e:49001****5.**I. Ekeland and R. Temam,*Convex analysis and variational problems*, North Holland, Amsterdam, 1976. MR**57:3931b****6.**L.C. Evans,*Weak convergence methods for nonlinear partial differential equations*, CBMS no. 74, 1990, Amer. Math. Soc. MR**91a:35009****7.**I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients,*SIAM J. Math. Anal.***29**(1998), 736-756. CMP**98:11****8.**D. Gilbarg and N.S. Trudinger,*Elliptic partial differential equations of second order*, Springer, 2nd ed., 1983. MR**86c:35035****9.**D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients,*Arch. Rat. Mech. Anal.***115**(1991), 329-365. MR**92k:49089****10.**D. Kinderlehrer and P. Pedregal, Gradient Young measure generated by sequences in Sobolev spaces,*J. Geom. Analysis***4**(1994), 59-90. MR**95f:49059****11.**J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Lyngby.**12.**J. Kristensen, On the non-locality of quasiconvexity,*Ann. Inst. H. Poincaré Anal. Non Linéaire***16**(1999), 1-13.**13.**F.-C. Liu, A Luzin type property of Sobolev functions,*Indiana Univ. Math. J.***26**(1977), 645-651. MR**56:8782****14.**C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals,*Pacific J. Math.***2**(1952), 25-53. MR**14:992a****15.**C.B. Morrey,*Multiple integrals in the calculus of variations*, Springer, 1966. MR**34:2380****16.**P. Pedregal,*Parametrized measures and variational principles*, Birkhäuser, 1997. MR**98e:49001****17.**M. Sychev, A new approach to Young measure theory, relaxation and convergence in energy, to appear in*Ann. Inst. H. Poincaré Anal. Non Linéaire*.**18.**R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps,*J. Differ. Geom.***17**(1982), 307-335;**18**(1983), 329. MR**84b:58037****19.**R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps,*J. Differ. Geom.***18**(1983), 253-268. MR**85b:58037****20.**V. \v{S}verák, Lower semicontinuity of variational integrals and compensated compactness, in: Proc. ICM 1994, vol. 2, Birkhäuser, 1995, pp. 1153-1158. MR**97h:49021****21.**K. Zhang, A construction of quasiconvex functions with linear growth at infinity,*Ann. Scuola Norm. Sup. Pisa***19**(1992), 313-326. MR**94d:49018**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
49J45

Retrieve articles in all journals with MSC (1991): 49J45

Additional Information

**Stefan Müller**

Affiliation:
Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany

Email:
sm@mis.mpg.de

DOI:
https://doi.org/10.1090/S0002-9947-99-02520-9

Keywords:
Young measures,
quasiconvexity,
truncation

Received by editor(s):
June 23, 1997

Published electronically:
July 21, 1999

Article copyright:
© Copyright 1999
American Mathematical Society