On the coefficients of Jacobi sums in prime cyclotomic fields
HTML articles powered by AMS MathViewer
- by F. Thaine
- Trans. Amer. Math. Soc. 351 (1999), 4769-4790
- DOI: https://doi.org/10.1090/S0002-9947-99-02223-0
- Published electronically: July 1, 1999
- PDF | Request permission
Abstract:
Let $p\geq 5$ and $q=pf+1$ be prime numbers, and let $s$ be a primitive root mod $q$. For $1\leq n\leq p-2$, denote by $J_{n}$ the Jacobi sum $-\sum _{k=2}^{q-1}\zeta _p ^{ \text {ind}_{s}(k)+n \text {ind}_{s}(1-k)}$. We study the integers $d_{n,k}$ such that $J_{n}=\sum _{k=0}^{p-1}d_{n,k}\zeta _p ^{k}$ and $\sum _{k=0}^{p-1}d_{n,k}=1$. We give a list of properties that characterize these coefficients. Then we show some of their applications to the study of the arithmetic of $\mathbb {Z} [\zeta _p +\zeta _p ^{-1}]$, in particular to the study of Vandiver’s conjecture. For $m\in \mathbb {Z}-q\mathbb {Z}$, let $\rho _{n}(m)$ be the number of distinct roots of $X^{n+1}-X^{n}+m$ in $\mathbb {Z}/q\mathbb {Z}$. We show that $d_{n,k}=f-\sum _{a=0}^{f-1}\rho _{n}(s^{k+pa})$. We give closed formulas for the numbers $d_{1,k}$ and $d_{2,k}$ in terms of quadratic and cubic power residue symbols mod $q$.References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1972.
- L. E. Dickson, Cyclotomy, higher congruences and Waring’s problem, Amer. J. Math. 57 (1935), 391–424.
- E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetsen, J. Reine Angew. Math. 44 (1852), 93–146.
- Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. MR 1029028, DOI 10.1007/978-1-4612-0987-4
- V. A. Lebesgue, Recherches sur les nombres, J. Math. Pures Appl. 2 (1837), 253–292.
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- Thomas Storer, Cyclotomy and difference sets, Lectures in Advanced Mathematics, No. 2, Markham Publishing Co., Chicago, Ill., 1967. MR 0217033
- Francisco Thaine, On the relation between units and Jacobi sums in prime cyclotomic fields, Manuscripta Math. 73 (1991), no. 2, 127–151. MR 1128683, DOI 10.1007/BF02567634
- F. Thaine, Properties that characterize Gaussian periods and cyclotomic numbers, Proc. Amer. Math. Soc. 124 (1996), no. 1, 35–45. MR 1301532, DOI 10.1090/S0002-9939-96-03108-5
- F. Thaine, On the $p$-part of the ideal class group of $\mathbf Q(\zeta _p+\zeta _p^{-1})$ and Vandiver’s conjecture, Michigan Math. J. 42 (1995), no. 2, 311–344. MR 1342493, DOI 10.1307/mmj/1029005231
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Herbert S. Wilf, generatingfunctionology, 2nd ed., Academic Press, Inc., Boston, MA, 1994. MR 1277813
Bibliographic Information
- F. Thaine
- Affiliation: Department of Mathematics and Statistics - CICMA, Concordia University, 1455, de Maisonneuve Blvd. W., Montreal, Quebec, H3G 1M8, Canada
- Email: ftha@vax2.concordia.ca
- Received by editor(s): May 8, 1997
- Received by editor(s) in revised form: August 29, 1997
- Published electronically: July 1, 1999
- Additional Notes: This work was supported in part by grants from NSERC and FCAR
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 4769-4790
- MSC (1991): Primary 11R18; Secondary 11T22
- DOI: https://doi.org/10.1090/S0002-9947-99-02223-0
- MathSciNet review: 1475696