On the Normal Subgroups of $G_2(A)$
HTML articles powered by AMS MathViewer
- by Douglas L. Costa and Gordon E. Keller
- Trans. Amer. Math. Soc. 351 (1999), 5051-5088
- DOI: https://doi.org/10.1090/S0002-9947-99-02231-X
- Published electronically: August 25, 1999
- PDF | Request permission
Abstract:
We give a characterization theorem for the $E(A)$-normalized subgroups of $G_2(A)$, where $A$ is any commutative ring. This is the last of the simple Chevalley-Demazure group-schemes for which such a theorem is lacking.References
- Eiichi Abe, Chevalley groups over local rings, Tohoku Math. J. (2) 21 (1969), 474–494. MR 258837, DOI 10.2748/tmj/1178242958
- Eiichi Abe, Normal subgroups of Chevalley groups over commutative rings, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 1–17. MR 991973, DOI 10.1090/conm/083/991973
- Eiichi Abe and Kazuo Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 28 (1976), no. 2, 185–198. MR 439947, DOI 10.2748/tmj/1178240833
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $\textrm {SL}_{n}\,(n\geq 3)$ and $\textrm {Sp}_{2n}\,(n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 244257
- Z. I. Borevich and N. A. Vavilov, The distribution of subgroups in the full linear group over a commutative ring, Proc. Steklov Inst. Math. 3(1985), 27–46.
- Douglas L. Costa and Gordon E. Keller, The $E(2,A)$ sections of $\textrm {SL}(2,A)$, Ann. of Math. (2) 134 (1991), no. 1, 159–188. MR 1114610, DOI 10.2307/2944335
- Douglas L. Costa and Gordon E. Keller, Radix redux: normal subgroups of symplectic groups, J. Reine Angew. Math. 427 (1992), 51–105. MR 1162432
- D. Costa and G. Keller, Power residue symbols and the central sections of $SL(2,A)$, $K$-Theory 15 (1998), 33–98.
- I. Z. Golubchik, On the general linear group over an associative ring, Uspekhi Math. Nauk. 28:3(1973), 179–180.
- I. Z. Golubchik, Subgroups of the general linear group $\textrm {GL}_{n}(R)$ over an associative ring $R$, Uspekhi Mat. Nauk 39 (1984), no. 1(235), 125–126 (Russian). MR 733962
- Alexander J. Hahn and O. Timothy O’Meara, The classical groups and $K$-theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. Dieudonné. MR 1007302, DOI 10.1007/978-3-662-13152-7
- Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979. Republication of the 1962 original. MR 559927
- Giovanni Taddei, Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 693–710 (French). MR 862660, DOI 10.1090/conm/055.2/1862660
- L. N. Vaserstein, On the normal subgroups of $\textrm {GL}_{n}$ over a ring, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 456–465. MR 618316, DOI 10.1007/BFb0089533
- Leonid N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 38 (1986), no. 2, 219–230. MR 843808, DOI 10.2748/tmj/1178228489
- Nikolai A. Vavilov, Structure of Chevalley groups over commutative rings, Nonassociative algebras and related topics (Hiroshima, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 219–335. MR 1150262
- J. S. Wilson, The normal and subnormal structure of general linear groups, Proc. Cambridge Philos. Soc. 71 (1972), 163–177. MR 291304, DOI 10.1017/s0305004100050416
Bibliographic Information
- Douglas L. Costa
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903-3199
- Email: dlc4v@virginia.edu
- Gordon E. Keller
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903-3199
- Email: gek@virginia.edu
- Received by editor(s): April 1, 1997
- Received by editor(s) in revised form: May 22, 1997
- Published electronically: August 25, 1999
- Additional Notes: Research partially supported by NSA grant MDA 904-94-H-2008 and NSF grant DMS-9622899.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 5051-5088
- MSC (1991): Primary 20H05; Secondary 20G35
- DOI: https://doi.org/10.1090/S0002-9947-99-02231-X
- MathSciNet review: 1487611