When almost multiplicative morphisms are close to homomorphisms
HTML articles powered by AMS MathViewer
- by Huaxin Lin
- Trans. Amer. Math. Soc. 351 (1999), 5027-5049
- DOI: https://doi.org/10.1090/S0002-9947-99-02310-7
- Published electronically: August 10, 1999
- PDF | Request permission
Abstract:
It is shown that approximately multiplicative contractive positive morphisms from $C(X)$ (with dim $X\le 2$) into a simple $C^*$-algebra $A$ of real rank zero and of stable rank one are close to homomorphisms, provided that certain $K$-theoretical obstacles vanish. As a corollary we show that a homomorphism $h: C(X)\to A$ is approximated by homomorphisms with finite dimensional range, if $h$ gives no $K$-theoretical obstacle.References
- I. David Berg and Kenneth R. Davidson, Almost commuting matrices and a quantitative version of the Brown-Douglas-Fillmore theorem, Acta Math. 166 (1991), no. 1-2, 121–161. MR 1088984, DOI 10.1007/BF02398885
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348. MR 454645
- L. G. Brown, Interpolation by projections in $C^*$-algebras of real rank zero, J. Operator Theory, 71 (1977), 335-348.
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- L. G. Brown and G. K. Pedersen, On the geometry of the unit ball of a $C^*$-algebra, part II , preprint of Mathematics Institute of Copenhagen University (1993).
- Lawrence G. Brown and Gert K. Pedersen, On the geometry of the unit ball of a $C^*$-algebra, J. Reine Angew. Math. 469 (1995), 113–147. MR 1363827, DOI 10.1515/crll.1995.469.113
- Man Duen Choi, Almost commuting matrices need not be nearly commuting, Proc. Amer. Math. Soc. 102 (1988), no. 3, 529–533. MR 928973, DOI 10.1090/S0002-9939-1988-0928973-3
- Man Duen Choi and Edward G. Effros, The completely positive lifting problem for $C^*$-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609. MR 417795, DOI 10.2307/1970968
- Joachim Cuntz, $K$-theory for certain $C^{\ast }$-algebras, Ann. of Math. (2) 113 (1981), no. 1, 181–197. MR 604046, DOI 10.2307/1971137
- Marius Dădărlat, Reduction to dimension three of local spectra of real rank zero $C^*$-algebras, J. Reine Angew. Math. 460 (1995), 189–212. MR 1316577, DOI 10.1515/crll.1995.460.189
- Marius Dădărlat, Approximately unitarily equivalent morphisms and inductive limit $C^\ast$-algebras, $K$-Theory 9 (1995), no. 2, 117–137. MR 1340842, DOI 10.1007/BF00961456
- M. Dădărlat and T. A. Loring, The $K$-theory of abelian subalgebras of AF algebras, J. Reine Angew. Math. 432 (1992), 39–55. MR 1184757
- Marius Dădărlat and Terry A. Loring, $K$-homology, asymptotic representations, and unsuspended $E$-theory, J. Funct. Anal. 126 (1994), no. 2, 367–383. MR 1305073, DOI 10.1006/jfan.1994.1151
- Marius Dadarlat and Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), no. 2, 355–377. MR 1404333, DOI 10.1215/S0012-7094-96-08412-4
- Kenneth R. Davidson, Almost commuting Hermitian matrices, Math. Scand. 56 (1985), no. 2, 222–240. MR 813638, DOI 10.7146/math.scand.a-12098
- M. Dădărlat and A. Némethi, Shape theory and (connective) $K$-theory, J. Operator Theory 23 (1990), no. 2, 207–291. MR 1066807
- Edward G. Effros, Dimensions and $C^{\ast }$-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- George A. Elliott, A classification of certain simple $C^*$-algebras, Quantum and non-commutative analysis (Kyoto, 1992) Math. Phys. Stud., vol. 16, Kluwer Acad. Publ., Dordrecht, 1993, pp. 373–385. MR 1276305
- G. A. Elliott, Are amenable $C^*$-algebras classifiable?, Representation Theory of Groups and Algebras, Contemporary Math. vol 145, Amer. Math. Soc., Providence, RI, 1993.
- George A. Elliott, The classification problem for amenable $C^*$-algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 922–932. MR 1403992
- G. A. Elliott and G. Gong, On the classification of $C^*$-algebras of real rank zero, II, Ann. Math., 144 (1996), 497-610.
- George A. Elliott, Guihua Gong, Huaxin Lin, and Cornel Pasnicu, Abelian $C^*$-subalgebras of $C^*$-algebras of real rank zero and inductive limit $C^*$-algebras, Duke Math. J. 85 (1996), no. 3, 511–554. MR 1422356, DOI 10.1215/S0012-7094-96-08520-8
- George A. Elliott and Terry A. Loring, AF embeddings of $C(\mathbf T^2)$ with a prescribed $K$-theory, J. Funct. Anal. 103 (1992), no. 1, 1–25. MR 1144678, DOI 10.1016/0022-1236(92)90130-B
- Mikael Rørdam, Classification of certain infinite simple $C^*$-algebras, J. Funct. Anal. 131 (1995), no. 2, 415–458. MR 1345038, DOI 10.1006/jfan.1995.1095
- Ruy Exel, A Fredholm operator approach to Morita equivalence, $K$-Theory 7 (1993), no. 3, 285–308. MR 1244004, DOI 10.1007/BF00961067
- Ruy Exel and Terry Loring, Almost commuting unitary matrices, Proc. Amer. Math. Soc. 106 (1989), no. 4, 913–915. MR 975641, DOI 10.1090/S0002-9939-1989-0975641-9
- Ruy Exel and Terry A. Loring, Invariants of almost commuting unitaries, J. Funct. Anal. 95 (1991), no. 2, 364–376. MR 1092131, DOI 10.1016/0022-1236(91)90034-3
- Peter Friis and Mikael Rørdam, Almost commuting self-adjoint matrices—a short proof of Huaxin Lin’s theorem, J. Reine Angew. Math. 479 (1996), 121–131. MR 1414391, DOI 10.1515/crll.1996.479.121
- G. Gong, Classification of $C^*$-algebras of real rank zero and unsuspended $E$-equivalent types, J. Funct. Anal., 152 (1998), 281-329.
- G. Gong, On inductive limits of matrix algebras over higher dimensional spaces, part I, II, Math. Scand., 80 (1997), 41-55, 56-100.
- Guihua Gong, Approximation by dimension drop $C^*$-algebras and classification, C. R. Math. Rep. Acad. Sci. Canada 16 (1994), no. 1, 40–44. MR 1276343
- G. Gong and H. Lin, Classification of homeomorphisms from $C(X)$ into a simple $C^*$-algebra, of real rank zero, preprint.
- G. Gong and H. Lin, Almost multiplicative morphisms and almost commutative matrices, preprint.
- K. R. Goodearl, Notes on a class of simple $C^\ast$-algebras with real rank zero, Publ. Mat. 36 (1992), no. 2A, 637–654 (1993). MR 1209829, DOI 10.5565/PUBLMAT_{3}62A92_{2}3
- E. Kirchberg, in preparation.
- L. Li, $C^*$-algebra homomorphisms and $KK$-theory, preprint.
- Hua Xin Lin, Skeleton $C^*$-subalgebras, Canad. J. Math. 44 (1992), no. 2, 324–341. MR 1162347, DOI 10.4153/CJM-1992-022-7
- Hua Xin Lin, $C^*$-algebra extensions of $C(X)$, Mem. Amer. Math. Soc. 115 (1995), no. 550, vi+89. MR 1257081, DOI 10.1090/memo/0550
- H. Lin, Approximation by normal elements with finite spectra in $C^*$-algebras of real rank zero, Pacific. J. Math., 173 (1996), 443-489.
- H. Lin, Almost commuting unitaries and classification of purely infinite simple $C^*$-algebras, J. Funct. Anal., to appear.
- Hua Xin Lin, Almost commuting unitary elements in purely infinite simple $C^*$-algebras, Math. Ann. 303 (1995), no. 4, 599–616. MR 1359951, DOI 10.1007/BF01461007
- Hua Xin Lin, Almost normal elements, Internat. J. Math. 5 (1994), no. 5, 765–778. MR 1297416, DOI 10.1142/S0129167X94000383
- Huaxin Lin, Almost commuting selfadjoint matrices and applications, Operator algebras and their applications (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 193–233. MR 1424963
- Hua Xin Lin, Extensions by $C^\ast$-algebras with real rank zero, Internat. J. Math. 4 (1993), no. 2, 231–252. MR 1217382, DOI 10.1142/S0129167X93000133
- Hua Xin Lin, Extensions by $C^*$-algebras of real rank zero. II, Proc. London Math. Soc. (3) 71 (1995), no. 3, 641–674. MR 1347408, DOI 10.1112/plms/s3-71.3.641
- H. Lin, Homomorphisms from $C(X)$ into $C^*$-algebras, Canad. J. Math., 49 (1997), 963–1009.
- Huaxin Lin, Almost multiplicative morphisms and some applications, J. Operator Theory 37 (1997), no. 1, 121–154. MR 1438204
- H. Lin, $C^*$-algebras with weak (FN), J. Funct. Anal., 150 (1997), 65-74.
- H. Lin, Extensions of $C(X)$ by simple $C^*$-algebras of real rank zero, Amer. J. Math., 119 (1997), 1263-1289.
- Hua Xin Lin and N. Christopher Phillips, Almost multiplicative morphisms and the Cuntz algebra $\scr O_2$, Internat. J. Math. 6 (1995), no. 4, 625–643. MR 1339649, DOI 10.1142/S0129167X95000250
- Hua Xin Lin and N. Christopher Phillips, Approximate unitary equivalence of homomorphisms from $\scr O_\infty$, J. Reine Angew. Math. 464 (1995), 173–186. MR 1340340
- Terry A. Loring, $C^*$-algebras generated by stable relations, J. Funct. Anal. 112 (1993), no. 1, 159–203. MR 1207940, DOI 10.1006/jfan.1993.1029
- Terry A. Loring, $K$-theory and asymptotically commuting matrices, Canad. J. Math. 40 (1988), no. 1, 197–216. MR 928219, DOI 10.4153/CJM-1988-008-9
- Terry A. Loring, Normal elements of $C^*$-algebras of real rank zero without finite-spectrum approximants, J. London Math. Soc. (2) 51 (1995), no. 2, 353–364. MR 1325578, DOI 10.1112/jlms/51.2.353
- Terry A. Loring, Stable relations. II. Corona semiprojectivity and dimension-drop $C^*$-algebras, Pacific J. Math. 172 (1996), no. 2, 461–475. MR 1386627
- T. A. Loring, When matrices commute, preprint.
- Sibe Mardešić, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), 278–291. MR 116306
- Gert K. Pedersen, $SAW^\ast$-algebras and corona $C^\ast$-algebras, contributions to noncommutative topology, J. Operator Theory 15 (1986), no. 1, 15–32. MR 816232
- N. Christopher Phillips, Approximate unitary equivalence of homomorphisms from odd Cuntz algebras, Operator algebras and their applications (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 243–255. MR 1424965
- N. C. Phillips, A Classification theorem for nuclear purely infinite simple $C^*$-algebras, preprint 1995.
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Mikael Rørdam, Classification of certain infinite simple $C^*$-algebras, J. Funct. Anal. 131 (1995), no. 2, 415–458. MR 1345038, DOI 10.1006/jfan.1995.1095
- M. Rørdam, Classification of certain infinite simple $C^*$-algebras, III, Fields Inst. Commun., 13, Amer. Math. Soc., Providence, RI, 1997.
- Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, DOI 10.1215/S0012-7094-87-05524-4
- Claude Schochet, Topological methods for $C^{\ast }$-algebras. IV. Mod $p$ homology, Pacific J. Math. 114 (1984), no. 2, 447–468. MR 757511
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
- Shuang Zhang, Certain $C^\ast$-algebras with real rank zero and their corona and multiplier algebras. I, Pacific J. Math. 155 (1992), no. 1, 169–197. MR 1174483
- Shuang Zhang, $C^*$-algebras with real rank zero and the internal structure of their corona and multiplier algebras. III, Canad. J. Math. 42 (1990), no. 1, 159–190. MR 1043517, DOI 10.4153/CJM-1990-010-5
- Shuang Zhang, $K_1$-groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325 (1991), no. 2, 793–818. MR 998130, DOI 10.1090/S0002-9947-1991-0998130-8
- Shuang Zhang, Certain $C^\ast$-algebras with real rank zero and their corona and multiplier algebras. II, $K$-Theory 6 (1992), no. 1, 1–27. MR 1186771, DOI 10.1007/BF00961332
Bibliographic Information
- Huaxin Lin
- Affiliation: Department of Mathematics, East China Normal University, Shanghai 200062, China
- Address at time of publication: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Email: hlin@darkwing.uoregon.edu
- Received by editor(s): April 10, 1997
- Published electronically: August 10, 1999
- Additional Notes: Research partially supported by NSF grant DMS 9531776
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 5027-5049
- MSC (1991): Primary 46L05; Secondary 46L80
- DOI: https://doi.org/10.1090/S0002-9947-99-02310-7
- MathSciNet review: 1603918