Steepest descent evolution equations: asymptotic behavior of solutions and rate of convergence
HTML articles powered by AMS MathViewer
- by R. Cominetti and O. Alemany
- Trans. Amer. Math. Soc. 351 (1999), 4847-4860
- DOI: https://doi.org/10.1090/S0002-9947-99-02508-8
- Published electronically: August 30, 1999
- PDF | Request permission
Abstract:
We study the asymptotic behavior of the solutions of evolution equations of the form $\dot u(t)\in -\partial f(u(t),r(t))$, where $f(\cdot ,r)$ is a one-parameter family of approximations of a convex function $f(\cdot )$ we wish to minimize. We investigate sufficient conditions on the parametrization $r(t)$ ensuring that the integral curves $u(t)$ converge when $t\rightarrow \infty$ towards a particular minimizer $u_\infty$ of $f$. The speed of convergence is also investigated, and a result concerning the continuity of the limit point $u_\infty$ with respect to the parametrization $r(\cdot )$ is established. The results are illustrated on different approximation methods. In particular, we present a detailed application to the logarithmic barrier in linear programming.References
- Hédy Attouch and Alain Damlamian, Strong solutions for parabolic variational inequalities, Nonlinear Anal. 2 (1978), no. 3, 329–353. MR 512663, DOI 10.1016/0362-546X(78)90021-4
- H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method, J. Differential Equations 128 (1996), no. 2, 519–540. MR 1398330, DOI 10.1006/jdeq.1996.0104
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- Haïm Brézis, Asymptotic behavior of some evolution systems, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 141–154. MR 513816
- Ronald E. Bruck Jr., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Functional Analysis 18 (1975), 15–26. MR 377609, DOI 10.1016/0022-1236(75)90027-0
- R. Cominetti, Asymptotic convergence of the steepest descent method for the exponential penalty in linear programming, J. Convex Anal. 2 (1995), no. 1-2, 145–152. MR 1363365
- R. Cominetti and J. San Martín, Asymptotic analysis of the exponential penalty trajectory in linear programming, Math. Programming 67 (1994), no. 2, Ser. A, 169–187. MR 1305565, DOI 10.1007/BF01582220
- S. Bergmann and J. Marcinkiewicz, Sur les fonctions analytiques de deux variables complexes, Fund. Math. 33 (1939), 75–94 (French). MR 57, DOI 10.4064/fm-33-1-75-94
- Hiroyuki Furuya, Koichi Miyashiba, and Nobuyuki Kenmochi, Asymptotic behavior of solutions to a class of nonlinear evolution equations, J. Differential Equations 62 (1986), no. 1, 73–94. MR 830048, DOI 10.1016/0022-0396(86)90106-3
- Kenmochi N., “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Ed. Chiba Univ., Vol. 30, pp. 1-87, 1981.
- L. McLinden, An analogue of Moreau’s proximation theorem, with application to the nonlinear complementarity problem, Pacific J. Math. 88 (1980), no. 1, 101–161. MR 595817
- Nimrod Megiddo, Pathways to the optimal set in linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987) Springer, New York, 1989, pp. 131–158. MR 982720
- Zdzisław Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 211301, DOI 10.1090/S0002-9904-1967-11761-0
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- A. N. Tikhonov and V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Izdat. “Nauka”, Moscow, 1974 (Russian). MR 0455366
- Torralba D., Convergence épigraphique et changements d’échelle en analyse variationnelle et optimisation, Thesis, Université de Montpellier II, 1996.
Bibliographic Information
- R. Cominetti
- Affiliation: Universidad de Chile, Casilla 170/3, Correo 3, Santiago, Chile.
- Email: rcominet@dim.uchile.cl
- O. Alemany
- Affiliation: Universidad de Chile, Casilla 170/3, Correo 3, Santiago, Chile.
- Received by editor(s): February 5, 1997
- Published electronically: August 30, 1999
- Additional Notes: This work was completed while the first author was visiting Laboratoire d’Econometrie, Ecole Polytechnique, Paris. Partially supported by Comisión Nacional de Investigación Científica y Tecnológica de Chile under Fondecyt grant 1961131
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 4847-4860
- MSC (1991): Primary 34C35, 34D05; Secondary 49M10, 49M30
- DOI: https://doi.org/10.1090/S0002-9947-99-02508-8
- MathSciNet review: 1675174