Homogeneous spaces with invariant projectively flat affine connections
HTML articles powered by AMS MathViewer
- by Hirohiko Shima
- Trans. Amer. Math. Soc. 351 (1999), 4713-4726
- DOI: https://doi.org/10.1090/S0002-9947-99-02523-4
- Published electronically: August 25, 1999
- PDF | Request permission
Abstract:
We characterize invariant projectively flat affine connections in terms of affine representations of Lie algebras, and show that a homogeneous space admits an invariant projectively flat affine connection if and only if it has an equivariant centro-affine immersion. We give a correspondence between semi-simple symmetric spaces with invariant projectively flat affine connections and central-simple Jordan algebras.References
- Yoshio Agaoka, Geometric invariants associated with flat projective structures, J. Math. Kyoto Univ. 22 (1982/83), no. 4, 701–718. MR 685526, DOI 10.1215/kjm/1250521676
- Hel Braun and Max Koecher, Jordan-Algebren, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 128, Springer-Verlag, Berlin-New York, 1966 (German). MR 0204470
- Soji Kaneyuki, The Sylvester’s law of inertia in simple graded Lie algebras, J. Math. Soc. Japan 50 (1998), no. 3, 593–614. MR 1626338, DOI 10.2969/jmsj/05030593
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
- M. Koecher, Jordan algebras and their applications, Lecture notes, Univ. of Minnesota, Minneapolis, 1962.
- Jean-Louis Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France 89 (1961), 515–533 (French). MR 145559
- Katsumi Nomizu and Ulrich Pinkall, On a certain class of homogeneous projectively flat manifolds, Tohoku Math. J. (2) 39 (1987), no. 3, 407–427. MR 902579, DOI 10.2748/tmj/1178228287
- Katsumi Nomizu and Takeshi Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994. Geometry of affine immersions. MR 1311248
- Takeshi Sasaki, Hyperbolic affine hyperspheres, Nagoya Math. J. 77 (1980), 107–123. MR 556312
- Hirohiko Shima, On locally symmetric homogeneous domains of completely reducible linear Lie groups, Math. Ann. 217 (1975), no. 1, 93–95. MR 379914, DOI 10.1007/BF01363245
- Hirohiko Shima, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan 29 (1977), no. 3, 581–589. MR 451175, DOI 10.2969/jmsj/02930581
- Hirohiko Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 3, 91–128. MR 597019
- È. B. Vinberg, Homogeneous cones, Soviet Math. Dokl. 1 (1960), 787–790. MR 0141680
- È. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303–358 (Russian). MR 0158414
Bibliographic Information
- Hirohiko Shima
- Affiliation: Department of Mathematics, Yamaguchi University, Yamaguchi 753-8512, Japan
- Email: shima@po.cc.yamaguchi-u.ac.jp
- Received by editor(s): March 15, 1996
- Published electronically: August 25, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 4713-4726
- MSC (1991): Primary 53C05, 53C30, 53C35, 53A15; Secondary 17C20
- DOI: https://doi.org/10.1090/S0002-9947-99-02523-4
- MathSciNet review: 1675234