Capacity convergence results and applications to a Berstein-Markov inequality
HTML articles powered by AMS MathViewer
- by T. Bloom and N. Levenberg
- Trans. Amer. Math. Soc. 351 (1999), 4753-4767
- DOI: https://doi.org/10.1090/S0002-9947-99-02556-8
- Published electronically: August 25, 1999
- PDF | Request permission
Abstract:
Given a sequence $\{E_{j}\}$ of Borel subsets of a given non-pluripolar Borel set $E$ in the unit ball $B$ in $\mathbf {C}^{N}$ with $E \subset \subset B$, we show that the relative capacities $C(E_{j})$ converge to $C(E)$ if and only if the relative (global) extremal functions $u_{E_{j}}^{*}$ ($V_{E_{j}}^{*}$) converge pointwise to $u_{E}^{*}$ ($V_{E}^{*}$). This is used to prove a sufficient mass-density condition on a finite positive Borel measure with compact support $K$ in $\mathbf {C}^{N}$ guaranteeing that the pair $(K,\mu )$ satisfy a Bernstein-Markov inequality. This implies that the $L^{2}-$orthonormal polynomials associated to $\mu$ may be used to recover the global extremal function $V_{K}^{*}$.References
- Herbert J. Alexander and B. A. Taylor, Comparison of two capacities in $\textbf {C}^{n}$, Math. Z. 186 (1984), no. 3, 407–417. MR 744831, DOI 10.1007/BF01174894
- Alano Ancona, Sur une conjecture concernant la capacité et l’effilement, Théorie du potentiel (Orsay, 1983) Lecture Notes in Math., vol. 1096, Springer, Berlin, 1984, pp. 34–68 (French). MR 890353, DOI 10.1007/BFb0100106
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI 10.1007/BF02392348
- E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 133–171 (English, with French summary). MR 978244
- Thomas Bloom, Orthogonal polynomials in $\mathbf C^n$, Indiana Univ. Math. J. 46 (1997), no. 2, 427–452. MR 1481598, DOI 10.1512/iumj.1997.46.1360
- Thomas Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), no. 1, 1–21. MR 1492855, DOI 10.1006/jath.1997.3115
- T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic functions in $\textbf {C}$ and $\textbf {C}^n$, Rocky Mountain J. Math. 22 (1992), no. 2, 441–470. MR 1180711, DOI 10.1216/rmjm/1181072740
- Dan Coman, Integration by parts for currents and applications to the relative capacity and Lelong numbers, Mathematica 39(62) (1997), no. 1, 45–57. MR 1622653
- John Erik Fornæss and Berit Stensønes, Lectures on counterexamples in several complex variables, Mathematical Notes, vol. 33, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1987. MR 895821
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- S. Kolodziej, The complex Monge-Ampere equation, Acta Math. 180 (1998), 69–117.
- Norman Levenberg, Monge-Ampère measures associated to extremal plurisubharmonic functions in $\textbf {C}^n$, Trans. Amer. Math. Soc. 289 (1985), no. 1, 333–343. MR 779067, DOI 10.1090/S0002-9947-1985-0779067-3
- Herbert Stahl and Vilmos Totik, General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR 1163828, DOI 10.1017/CBO9780511759420
- Thanh Van Nguyen and Ahmed Zériahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. (2) 107 (1983), no. 1, 81–91 (French, with English summary). MR 699992
- J. L. Ullman, On the regular behaviour of orthogonal polynomials, Proc. London Math. Soc. (3) 24 (1972), 119–148. MR 291718, DOI 10.1112/plms/s3-24.1.119
- Yang Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), no. 2, 457–467. MR 1322940, DOI 10.1090/S0002-9939-96-03316-3
- Ahmed Zériahi, Capacité, constante de Čebyšev et polynômes orthogonaux associés à un compact de $\textbf {C}^n$, Bull. Sci. Math. (2) 109 (1985), no. 3, 325–335 (French, with English summary). MR 822830
Bibliographic Information
- T. Bloom
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Email: bloom@math.toronto.edu
- N. Levenberg
- Affiliation: Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
- MR Author ID: 113190
- Email: levenber@math.auckland.ac.nz
- Received by editor(s): February 11, 1998
- Received by editor(s) in revised form: March 5, 1999
- Published electronically: August 25, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 4753-4767
- MSC (1991): Primary 31C15, 32F05, 41A17
- DOI: https://doi.org/10.1090/S0002-9947-99-02556-8
- MathSciNet review: 1695017