Hankel Operators on Bounded Analytic Functions
HTML articles powered by AMS MathViewer
- by James Dudziak, T. W. Gamelin and Pamela Gorkin
- Trans. Amer. Math. Soc. 352 (2000), 363-377
- DOI: https://doi.org/10.1090/S0002-9947-99-02178-9
- Published electronically: July 21, 1999
- PDF | Request permission
Abstract:
For $U$ a domain in the complex plane and $g$ a bounded measurable function on $U$, the generalized Hankel operator $S_g$ on $H^\infty (U)$ is the operator of multiplication by $g$ followed by projection into $L^\infty /H^\infty$. Under certain conditions on $U$ we show that either $S_g$ is compact or there is an embedded $\ell ^\infty$ on which $S_g$ is bicontinuous. We characterize those $g$’s for which $S_g$ is compact in the case that $U$ is a Behrens roadrunner domain.References
- M. Behrens, The corona conjecture for a class of infinitely connected domains, Bull. Amer. Math. Soc. 76 (1970), 387–391. MR 256166, DOI 10.1090/S0002-9904-1970-12487-9
- Michael Frederick Behrens, The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains, Trans. Amer. Math. Soc. 161 (1971), 359–379. MR 435420, DOI 10.1090/S0002-9947-1971-0435420-9
- J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Studia Math. 77 (1984), no. 3, 245–253. MR 745280, DOI 10.4064/sm-77-3-246-253
- J. Bourgain, New Banach space properties of the disc algebra and $H^{\infty }$, Acta Math. 152 (1984), no. 1-2, 1–48. MR 736210, DOI 10.1007/BF02392189
- Joseph A. Cima, Svante Janson, and Keith Yale, Completely continuous Hankel operators on $H^\infty$ and Bourgain algebras, Proc. Amer. Math. Soc. 105 (1989), no. 1, 121–125. MR 931727, DOI 10.1090/S0002-9939-1989-0931727-6
- Joseph A. Cima, Karel Stroethoff, and Keith Yale, Bourgain algebras on the unit disk, Pacific J. Math. 160 (1993), no. 1, 27–41. MR 1227501
- Joseph A. Cima and Richard M. Timoney, The Dunford-Pettis property for certain planar uniform algebras, Michigan Math. J. 34 (1987), no. 1, 99–104. MR 873024, DOI 10.1307/mmj/1029003487
- Brian J. Cole and T. W. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Functional Analysis 46 (1982), no. 2, 158–220. MR 660185, DOI 10.1016/0022-1236(82)90034-9
- B. J. Cole and T. W. Gamelin, Weak-star continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 149–189. MR 781784
- A. M. Davie, T. W. Gamelin, and J. Garnett, Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc. 175 (1973), 37–68. MR 313514, DOI 10.1090/S0002-9947-1973-0313514-8
- T. W. Gamelin, Lectures on $H^\infty (D)$, Notas de Matemática, No.21, Universidad Nacional de La Plata, Argentina, 1972.
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin, Localization of the corona problem, Pacific J. Math. 34 (1970), 73–81. MR 276742
- T. W. Gamelin, Uniform algebras on plane sets, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 101–149. MR 0338784
- T. W. Gamelin and John Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455–474. MR 303296, DOI 10.2307/2373334
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Pamela Gorkin, Keiji Izuchi, and Raymond Mortini, Bourgain algebras of Douglas algebras, Canad. J. Math. 44 (1992), no. 4, 797–804. MR 1178569, DOI 10.4153/CJM-1992-047-6
- P. Gorkin and Z. Zheng, in preparation.
- Keiji Izuchi, Bourgain algebras of the disk, polydisk, and ball algebras, Duke Math. J. 66 (1992), no. 3, 503–519. MR 1167104, DOI 10.1215/S0012-7094-92-06616-6
- Scott F. Saccone, Banach space properties of strongly tight uniform algebras, Studia Math. 114 (1995), no. 2, 159–180. MR 1333869, DOI 10.4064/sm-114-2-159-180
- Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241–269. MR 252665, DOI 10.1090/S0002-9947-1969-0252665-2
Bibliographic Information
- James Dudziak
- Affiliation: Lyman Briggs School, Michigan State University, East Lansing, Michigan 48825
- Email: dudziak@pilot.msu.edu
- T. W. Gamelin
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90024
- Email: gamelin@math.ucla.edu
- Pamela Gorkin
- Affiliation: Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837
- MR Author ID: 75530
- Email: pgorkin@bucknell.edu
- Received by editor(s): May 6, 1997
- Published electronically: July 21, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 363-377
- MSC (1991): Primary 46J15, 47B38; Secondary 30D55, 47B05
- DOI: https://doi.org/10.1090/S0002-9947-99-02178-9
- MathSciNet review: 1473437