A local Peter-Weyl theorem
HTML articles powered by AMS MathViewer
- by Leonard Gross
- Trans. Amer. Math. Soc. 352 (2000), 413-427
- DOI: https://doi.org/10.1090/S0002-9947-99-02183-2
- Published electronically: February 15, 1999
- PDF | Request permission
Abstract:
An $Ad K$ invariant inner product on the Lie algebra of a compact connected Lie group $K$ extends to a Hermitian inner product on the Lie algebra of the complexified Lie group $K_{c}$. The Laplace-Beltrami operator, $\Delta$, on $K_{c}$ induced by the Hermitian inner product determines, for each number $a>0$, a Green’s function $r_{a}$ by means of the identity $(a^{2} -\Delta /4 )^{-1} = r_{a} *$. The Hilbert space of holomorphic functions on $K_{c}$ which are square integrable with respect to $r_{a} (x)dx$ is shown to be finite dimensional. It is spanned by the holomorphic extensions of the matrix elements of those irreducible representations of $K$ whose Casimir operator is appropriately related to $a$.References
- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 157250, DOI 10.1002/cpa.3160140303
- Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scientists and engineers, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. MR 538168
- Bruce K. Driver, On the Kakutani-Itô-Segal-Gross and Segal-Bargmann-Hall isomorphisms, J. Funct. Anal. 133 (1995), no. 1, 69–128. MR 1351644, DOI 10.1006/jfan.1995.1120
- B. K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, Proceedings of the 1994 Taniguchi Symposium (to appear).
- Leonard Gross, The homogeneous chaos over compact Lie groups, Stochastic processes, Springer, New York, 1993, pp. 117–123. MR 1427307
- Brian C. Hall, The Segal-Bargmann “coherent state” transform for compact Lie groups, J. Funct. Anal. 122 (1994), no. 1, 103–151. MR 1274586, DOI 10.1006/jfan.1994.1064
- Omar Hijab, Hermite functions on compact Lie groups. I, J. Funct. Anal. 125 (1994), no. 2, 480–492. MR 1297678, DOI 10.1006/jfan.1994.1134
- Paul Krée, Solutions faibles d’équations aux dérivées fonctionnelles. I, Séminaire Pierre Lelong (Analyse) (année 1972–1973), Lecture Notes in Math., Vol. 410, Springer, Berlin, 1974, pp. 142–181 (French). MR 0372611
- Paul Krée, Solutions faibles d’équations aux dérivées fonctionnelles. II, Séminaire Pierre Lelong (Analyse) (année 1973–1974), Lecture Notes in Math., Vol. 474, Springer, Berlin, 1975, pp. 16–47 (French). MR 0394194
- Paul Krée, Calcul d’intégrales et de dérivées en dimension infinie, J. Functional Analysis 31 (1979), no. 2, 150–186 (French). MR 525949, DOI 10.1016/0022-1236(79)90059-4
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- I. E. Segal, Mathematical characterization of the physical vacuum for a linear Bose-Einstein field. (Foundations of the dynamics of infinite systems. III), Illinois J. Math. 6 (1962), 500–523. MR 143519
- I. E. Segal, The complex-wave representation of the free boson field, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday), Adv. in Math. Suppl. Stud., vol. 3, Academic Press, New York-London, 1978, pp. 321–343. MR 538026
Bibliographic Information
- Leonard Gross
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- MR Author ID: 198906
- Email: gross@math.cornell.edu
- Received by editor(s): March 3, 1997
- Received by editor(s) in revised form: April 18, 1997
- Published electronically: February 15, 1999
- Additional Notes: This work was partially supported by NSF Grant DMS-9501238.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 413-427
- MSC (1991): Primary 22E30; Secondary 22C05
- DOI: https://doi.org/10.1090/S0002-9947-99-02183-2
- MathSciNet review: 1473442