Orbit equivalence of global attractors of semilinear parabolic differential equations
HTML articles powered by AMS MathViewer
- by Bernold Fiedler and Carlos Rocha
- Trans. Amer. Math. Soc. 352 (2000), 257-284
- DOI: https://doi.org/10.1090/S0002-9947-99-02209-6
- Published electronically: September 21, 1999
- PDF | Request permission
Abstract:
We consider global attractors $\mathcal {A}_f$ of dissipative parabolic equations \begin{equation*} u_t=u_{xx}+f(x,u,u_x) \end{equation*} on the unit interval $0\leq x\leq 1$ with Neumann boundary conditions. A permutation $\pi _f$ is defined by the two orderings of the set of (hyperbolic) equilibrium solutions $u_t\equiv 0$ according to their respective values at the two boundary points $x=0$ and $x=1.$ We prove that two global attractors, $\mathcal {A}_f$ and $\mathcal {A}_g$, are globally $C^0$ orbit equivalent, if their equilibrium permutations $\pi _f$ and $\pi _g$ coincide. In other words, some discrete information on the ordinary differential equation boundary value problem $u_t\equiv 0$ characterizes the attractor of the above partial differential equation, globally, up to orbit preserving homeomorphisms.References
- S. B. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc. 307 (1988), no. 2, 545–568. MR 940217, DOI 10.1090/S0002-9947-1988-0940217-X
- Herbert Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math. 360 (1985), 47–83. MR 799657, DOI 10.1515/crll.1985.360.47
- S. B. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Differential Equations 62 (1986), no. 3, 427–442. MR 837763, DOI 10.1016/0022-0396(86)90093-8
- Sigurd Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79–96. MR 953678, DOI 10.1515/crll.1988.390.79
- Sigurd Angenent, Parabolic equations for curves on surfaces. I. Curves with $p$-integrable curvature, Ann. of Math. (2) 132 (1990), no. 3, 451–483. MR 1078266, DOI 10.2307/1971426
- Sigurd Angenent, Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions, Ann. of Math. (2) 133 (1991), no. 1, 171–215. MR 1087347, DOI 10.2307/2944327
- R. Aris. The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts I, II. Clarendon Press, Oxford, 1975.
- P. van Moerbeke, Linearizing completely integrable systems on complex algebraic tori, Dynamics of infinite-dimensional systems (Lisbon, 1986) NATO Adv. Sci. Inst. Ser. F: Comput. Systems Sci., vol. 37, Springer, Berlin, 1987, pp. 421–449. MR 921926
- P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations. II. The complete solution, J. Differential Equations 81 (1989), no. 1, 106–135. MR 1012202, DOI 10.1016/0022-0396(89)90180-0
- Pavol Brunovský and Peter Poláčik, Generic hyperbolicity for reaction diffusion equations on symmetric domains, Z. Angew. Math. Phys. 38 (1987), no. 2, 172–183 (English, with German summary). MR 885681, DOI 10.1007/BF00945403
- A. V. Babin and M. I. Vishik, Attraktory èvolyutsionnykh uravneniĭ, “Nauka”, Moscow, 1989 (Russian). MR 1007829
- Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0)$, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). MR 0229250
- Nathaniel Chafee, A stability analysis for a semilinear parabolic partial differential equation, J. Differential Equations 15 (1974), 522–540. MR 358042, DOI 10.1016/0022-0396(74)90071-0
- N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17–37. MR 440205, DOI 10.1080/00036817408839081
- J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon ^2u_{xx}-f(u)$, Comm. Pure Appl. Math. 42 (1989), no. 5, 523–576. MR 997567, DOI 10.1002/cpa.3160420502
- Charles Conley and Joel Smoller, Topological techniques in reaction-diffusion equations, Biological growth and spread (Proc. Conf., Heidelberg, 1979) Lecture Notes in Biomath., vol. 38, Springer, Berlin-New York, 1980, pp. 473–483. MR 609381
- Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
- G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynam. Differential Equations 1 (1989), no. 1, 75–94. MR 1010961, DOI 10.1007/BF01048791
- Bernold Fiedler, Discrete Ljapunov functionals and $\omega$-limit sets, RAIRO Modél. Math. Anal. Numér. 23 (1989), no. 3, 415–431. Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987). MR 1014483, DOI 10.1051/m2an/1989230304151
- Bernold Fiedler, Global attractors of one-dimensional parabolic equations: sixteen examples, Tatra Mt. Math. Publ. 4 (1994), 67–92. Equadiff 8 (Bratislava, 1993). MR 1298457
- Bernold Fiedler, Do global attractors depend on boundary conditions?, Doc. Math. 1 (1996), No. 11, 215–228. MR 1397791
- Giorgio Fusco and Waldyr Muniz Oliva, Jacobi matrices and transversality, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), no. 3-4, 231–243. MR 963029, DOI 10.1017/S0308210500027748
- Giorgio Fusco and Carlos Rocha, A permutation related to the dynamics of a scalar parabolic PDE, J. Differential Equations 91 (1991), no. 1, 111–137. MR 1106120, DOI 10.1016/0022-0396(91)90134-U
- Bernold Fiedler and Carlos Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Differential Equations 125 (1996), no. 1, 239–281. MR 1376067, DOI 10.1006/jdeq.1996.0031
- B. Fiedler and C. Rocha. Boundary permutations and global attractors of dissipative Jacobi systems. In preparation, (1997).
- B. Fiedler and C. Rocha. Realization of meander permutations by boundary value problems. Preprint, (1998).
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Jack K. Hale, Numerical dynamics, Chaotic numerics (Geelong, 1993) Contemp. Math., vol. 172, Amer. Math. Soc., Providence, RI, 1994, pp. 1–30. MR 1294406, DOI 10.1090/conm/172/01795
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Daniel B. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations 59 (1985), no. 2, 165–205. MR 804887, DOI 10.1016/0022-0396(85)90153-6
- Morris W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math. 383 (1988), 1–53. MR 921986, DOI 10.1515/crll.1988.383.1
- Jack K. Hale, Luis T. Magalhães, and Waldyr M. Oliva, An introduction to infinite-dimensional dynamical systems—geometric theory, Applied Mathematical Sciences, vol. 47, Springer-Verlag, New York, 1984. With an appendix by Krzysztof P. Rybakowski. MR 725501, DOI 10.1007/0-387-22896-9_{9}
- Olga Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1991. MR 1133627, DOI 10.1017/CBO9780511569418
- Hiroshi Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 401–441. MR 672070
- H. Matano, Strongly order-preserving local semidynamical systems—theory and applications, Semigroups, theory and applications, Vol. I (Trieste, 1984) Pitman Res. Notes Math. Ser., vol. 141, Longman Sci. Tech., Harlow, 1986, pp. 178–185. MR 876941
- Hiroshi Matano, Asymptotic behavior of solutions of semilinear heat equations on $S^1$, Nonlinear diffusion equations and their equilibrium states, II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 13, Springer, New York, 1988, pp. 139–162. MR 956085, DOI 10.1007/978-1-4613-9608-6_{8}
- H. Matano. Personal communication, (1995).
- John Mallet-Paret and George R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 805–866. MR 943276, DOI 10.1090/S0894-0347-1988-0943276-7
- John Mallet-Paret and Hal L. Smith, The Poincaré-Bendixson theorem for monotone cyclic feedback systems, J. Dynam. Differential Equations 2 (1990), no. 4, 367–421. MR 1073471, DOI 10.1007/BF01054041
- W.M. Oliva. Stability of Morse-Smale maps. Rel. Tec, IME-USP, São Paulo, MAP 0301, (1983).
- J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, DOI 10.1016/0040-9383(69)90024-X
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541
- G. Polya. Qualitatives über Wärmeaustausch. Z. Angew. Math. Mech., 13:125–128, (1933).
- J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603
- G. Raugel. Personal communication, (1995).
- Carlos Rocha, Properties of the attractor of a scalar parabolic PDE, J. Dynam. Differential Equations 3 (1991), no. 4, 575–591. MR 1129561, DOI 10.1007/BF01049100
- Carlos Rocha, Bifurcation in discretized reaction-diffusion equations, Resenhas 1 (1994), no. 4, 403–419. Dynamical phase transitions (São Paulo, 1994). MR 1357943
- Alexander A. Samarskii, Victor A. Galaktionov, Sergei P. Kurdyumov, and Alexander P. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1995. Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. MR 1330922, DOI 10.1515/9783110889864.535
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
- C. Sturm. Sur une classe d’équations à différences partielles. J. Math. Pure Appl., 1:373–444, (1836).
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8
- Gershon Wolansky, Stationary and quasi-stationary shock waves for non-spatially homogeneous Burgers equation in the limit of small dissipation. I, Indiana Univ. Math. J. 41 (1992), no. 1, 43–69. MR 1160902, DOI 10.1512/iumj.1992.41.41004
- Gershon Wolansky, On the slow evolution of quasi-stationary shock waves, J. Dynam. Differential Equations 6 (1994), no. 2, 247–276. MR 1280139, DOI 10.1007/BF02218530
- T. I. Zelenjak, Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differencial′nye Uravnenija 4 (1968), 34–45 (Russian). MR 0223758
Bibliographic Information
- Bernold Fiedler
- Affiliation: Institut für Mathematik I, Freie Universität Berlin, Arnimallee 2-6, D-14195 Berlin, Germany
- Carlos Rocha
- Affiliation: Departamento de Matemática, Instituto Superior Técnico, Avenida Rovisco Pais, 1096 Lisboa Codex, Portugal
- Received by editor(s): September 17, 1996
- Received by editor(s) in revised form: June 12, 1997
- Published electronically: September 21, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 257-284
- MSC (1991): Primary 58F39, 35K55, 58F12
- DOI: https://doi.org/10.1090/S0002-9947-99-02209-6
- MathSciNet review: 1475682