On the existence of a unipotent support for the irreducible characters of a finite group of Lie type
HTML articles powered by AMS MathViewer
- by Meinolf Geck and Gunter Malle PDF
- Trans. Amer. Math. Soc. 352 (2000), 429-456 Request permission
Abstract:
In 1980, Lusztig posed the problem of showing the existence of a unipotent support for the irreducible characters of a finite group of Lie type. This problem was solved by Lusztig in the case where the characteristic of the field over which the group is defined is large enough. The first named author extended this to the case where the characteristic is good. It is the purpose of this paper to remove this condition as well, so that the existence of unipotent supports is established in complete generality.References
- D. I. Deriziotis, On the number of conjugacy classes in finite groups of Lie type, Comm. Algebra 13 (1985), no. 5, 1019–1045. MR 780636, DOI 10.1080/00927878508823204
- Meinolf Geck, On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes, Doc. Math. 1 (1996), No. 15, 293–317. MR 1418951
- Meinolf Geck and Gunter Malle, Cuspidal unipotent classes and cuspidal Brauer characters, J. London Math. Soc. (2) 53 (1996), no. 1, 63–78. MR 1362687, DOI 10.1112/jlms/53.1.63
- Gérard Laumon, Faisceaux caractères (d’après Lusztig), Astérisque 177-178 (1989), Exp. No. 709, 231–260 (French). Séminaire Bourbaki, Vol. 1988/89. MR 1040575
- G. Lusztig, On the finiteness of the number of unipotent classes, Invent. Math. 34 (1976), no. 3, 201–213. MR 419635, DOI 10.1007/BF01403067
- George Lusztig, Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 313–317. MR 604598
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226–265, 266–315. MR 806210, DOI 10.1016/0001-8708(85)90064-7
- George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226–265, 266–315. MR 806210, DOI 10.1016/0001-8708(85)90064-7
- G. Lusztig, On the representations of reductive groups with disconnected centre, Astérisque 168 (1988), 10, 157–166. Orbites unipotentes et représentations, I. MR 1021495
- George Lusztig, A unipotent support for irreducible representations, Adv. Math. 94 (1992), no. 2, 139–179. MR 1174392, DOI 10.1016/0001-8708(92)90035-J
- G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41–52. MR 527733, DOI 10.1112/jlms/s2-19.1.41
- G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR 803339, DOI 10.2969/aspm/00610289
- Gunter Malle, Die unipotenten Charaktere von ${}^2F_4(q^2)$, Comm. Algebra 18 (1990), no. 7, 2361–2381 (German). MR 1063140, DOI 10.1080/00927879008824026
- Toshiaki Shoji, Green functions of reductive groups over a finite field, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 289–301. MR 933366
- Toshiaki Shoji, Character sheaves and almost characters of reductive groups. I, II, Adv. Math. 111 (1995), no. 2, 244–313, 314–354. MR 1318530, DOI 10.1006/aima.1995.1024
- Toshiaki Shoji, Unipotent characters of finite classical groups, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 373–413. MR 1429881
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610
- G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR 803339, DOI 10.2969/aspm/00610289
- Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105–145. MR 136646, DOI 10.2307/1970423
- Harold N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62–89. MR 197587, DOI 10.1090/S0002-9947-1966-0197587-8
Additional Information
- Meinolf Geck
- Affiliation: U.F.R. de Mathématiques, Université Paris 7, et UMR 7586 du CNRS, 2 Place Jussieu, F–75251 Paris Cedex 05, France
- Address at time of publication: Institut Girard Desargues, Université Lyon 1, 69622 Villeurbanne Cedex, France
- MR Author ID: 272405
- Email: geck@desargues.univ-lyon1.fr
- Gunter Malle
- Affiliation: I.W.R., Im Neuenheimer Feld 368, D–69120 Heidelberg, Germany
- Address at time of publication: FB Mathematik/Informatik, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
- MR Author ID: 225462
- Email: malle@mathematik.uni-kassel.de
- Received by editor(s): November 1, 1996
- Received by editor(s) in revised form: July 29, 1997
- Published electronically: September 21, 1999
- Additional Notes: The second author gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 429-456
- MSC (1991): Primary 20C33, 20G40
- DOI: https://doi.org/10.1090/S0002-9947-99-02210-2
- MathSciNet review: 1475683