Two special cases of Ganea’s conjecture
HTML articles powered by AMS MathViewer
- by Jeffrey A. Strom
- Trans. Amer. Math. Soc. 352 (2000), 679-688
- DOI: https://doi.org/10.1090/S0002-9947-99-02046-2
- Published electronically: September 17, 1999
- PDF | Request permission
Abstract:
Ganea conjectured that for any finite CW complex $X$ and any $k>0$, $\operatorname {cat}(X\times S^k) =\operatorname {cat}(X) + 1$. In this paper we prove two special cases of this conjecture. The main result is the following. Let $X$ be a $(p-1)$-connected $n$-dimensional CW complex (not necessarily finite). We show that if $\operatorname {cat}(X) = \left \lfloor {n \over p} \right \rfloor + 1$ and $n\not \equiv -1 \operatorname {mod} p$ (which implies $p>1$), then $\operatorname {cat}(X\times S^k) =\operatorname {cat}(X) +1$. This is proved by showing that $\operatorname {wcat}(X\times S^k) =\operatorname {wcat}(X) + 1$ in a much larger range, and then showing that under the conditions imposed, $\operatorname {cat}(X)=\operatorname {wcat}(X)$. The second special case is an extension of Singhof’s earlier result for manifolds.References
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Tudor Ganea, Some problems on numerical homotopy invariants, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Lecture Notes in Math., Vol. 249, Springer, Berlin, 1971, pp. 23–30. MR 0339147
- W. J. Gilbert, Some examples for weak category and conilpotency, Illinois J. Math. 12 (1968), 421–432. MR 231375
- Kathryn P. Hess, A proof of Ganea’s conjecture for rational spaces, Topology 30 (1991), no. 2, 205–214. MR 1098914, DOI 10.1016/0040-9383(91)90006-P
- N. Iwase: Ganea’s conjecture on Lusternik-Schnirelmann category. Bull. London Math. Society 30 (1998), 623-634.
- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348. MR 516214, DOI 10.1016/0040-9383(78)90002-2
- Luis Montejano, A quick proof of Singhof’s $\textrm {cat}(M\times S^{1})=\textrm {cat}(M)+1$ theorem, Manuscripta Math. 42 (1983), no. 1, 49–52. MR 693418, DOI 10.1007/BF01171745
- Yuli B. Rudyak, On category weight and its applications, Topology 38 (1999), no. 1, 37–55. MR 1644063, DOI 10.1016/S0040-9383(97)00101-8
- Wilhelm Singhof, Minimal coverings of manifolds with balls, Manuscripta Math. 29 (1979), no. 2-4, 385–415. MR 545050, DOI 10.1007/BF01303636
- Paul A. Schweitzer, Secondary cohomology operations induced by the diagonal mapping, Topology 3 (1965), 337–355. MR 182969, DOI 10.1016/0040-9383(65)90002-9
- J. Strom, Category weight and essential category weight, Ph.D thesis, University of Wisconsin (1997).
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 0385836
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- Jeffrey A. Strom
- Affiliation: Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Address at time of publication: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- Email: jeffrey.strom@dartmouth.edu
- Received by editor(s): January 23, 1997
- Published electronically: September 17, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 679-688
- MSC (1991): Primary 55M30, 55P50; Secondary 55P42
- DOI: https://doi.org/10.1090/S0002-9947-99-02046-2
- MathSciNet review: 1443893