Factorization in generalized power series
HTML articles powered by AMS MathViewer
- by Alessandro Berarducci
- Trans. Amer. Math. Soc. 352 (2000), 553-577
- DOI: https://doi.org/10.1090/S0002-9947-99-02172-8
- Published electronically: May 20, 1999
- PDF | Request permission
Abstract:
The field of generalized power series with real coefficients and exponents in an ordered abelian divisible group $\mathbf {G}$ is a classical tool in the study of real closed fields. We prove the existence of irreducible elements in the ring $\mathbf {R}(( \mathbf {G}^{\leq 0}))$ consisting of the generalized power series with non-positive exponents. The following candidate for such an irreducible series was given by Conway (1976): $\sum _n t^{-1/n}+1$. Gonshor (1986) studied the question of the existence of irreducible elements and obtained necessary conditions for a series to be irreducible. We show that Conway’s series is indeed irreducible. Our results are based on a new kind of valuation taking ordinal numbers as values. If $\mathbf {G}= ( \mathbf {R}, +, 0, \leq )$ we can give the following test for irreducibility based only on the order type of the support of the series: if the order type is either $\omega$ or of the form $\omega ^{\omega ^\alpha }$ and the series is not divisible by any monomial, then it is irreducible. To handle the general case we use a suggestion of M.-H. Mourgues, based on an idea of Gonshor, which allows us to reduce to the special case $\mathbf {G}=\mathbf {R}$. In the final part of the paper we study the irreducibility of series with finite support.References
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Alessandro Berarducci and Margarita Otero, A recursive nonstandard model of normal open induction, J. Symbolic Logic 61 (1996), no. 4, 1228–1241. MR 1456104, DOI 10.2307/2275813
- D. Biljaković, Recursive models of open induction with infinite primes, Preprint, 1996.
- Sedki Boughattas, Résultats optimaux sur l’existence d’une partie entière dans les corps ordonnés, J. Symbolic Logic 58 (1993), no. 1, 326–333 (French, with French summary). MR 1217192, DOI 10.2307/2275340
- J. H. Conway, On numbers and games, London Mathematical Society Monographs, No. 6, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0450066
- L. van den Dries, A. Macintyre, D. Marker, Logarithmic-Exponential Power Series, Journal of the London Mathematical Society, ser. 2, 56 (1997) 417–434.
- Lou van den Dries, Angus Macintyre, and David Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1994), no. 1, 183–205. MR 1289495, DOI 10.2307/2118545
- Lou van den Dries, Which curves over $\textbf {Z}$ have points with coordinates in a discrete ordered ring?, Trans. Amer. Math. Soc. 264 (1981), no. 1, 181–189. MR 597875, DOI 10.1090/S0002-9947-1981-0597875-5
- L. van den Dries, Some model theory and number theory for models of weak systems of arithmetic, in: “Model Theory of Algebra and Arithmetic” (Karpacz, 1979; L.Pacholski et al., eds.), Lecture Notes in Mathematics 834, Springer-Verlag, Berlin-Heidelberg 1980, 346 – 362.82f:03029
- Otto Endler, Valuation theory, Universitext, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971). MR 0357379
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- A. Gleyzal, Transfinite numbers, Proceedings of the National Academy of Sciences 23 (1937) 581 – 587.
- Harry Gonshor, An introduction to the theory of surreal numbers, London Mathematical Society Lecture Note Series, vol. 110, Cambridge University Press, Cambridge, 1986. MR 872856, DOI 10.1017/CBO9780511629143
- H. Hahn, Über die nichtarchimedischen Grössensysteme, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, section IIa, 116 (1907) 601 – 655.
- F. Hausdorff, Mengenlehre, Berlin, 1927.
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- W. Krull, Algemeine Bewertungstheorie, Journal für die reine und angewandte Mathematik 167 (1932) 160 – 196.
- Franz-Viktor Kuhlmann and Salma Kuhlmann, On the structure of non-Archimedean exponential fields. II, Comm. Algebra 22 (1994), no. 12, 5079–5103. MR 1285726, DOI 10.1080/00927879408825121
- Salma Kuhlmann, On the structure of non-Archimedean exponential fields. I, Arch. Math. Logic 34 (1995), no. 3, 145–182. MR 1337111, DOI 10.1007/s001530050016
- Franz-Viktor Kuhlmann, Salma Kuhlmann, and Saharon Shelah, Exponentiation in power series fields, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3177–3183. MR 1402868, DOI 10.1090/S0002-9939-97-03964-6
- Angus Macintyre and David Marker, Primes and their residue rings in models of open induction, Ann. Pure Appl. Logic 43 (1989), no. 1, 57–77. MR 1001418, DOI 10.1016/0168-0072(89)90025-0
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Mojtaba Moniri, Recursive models of open induction of prescribed finite transcendence degree $>1$ with cofinal twin primes, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 9, 903–908 (English, with English and French summaries). MR 1302787
- M.-H. Mourgues, Applications des corps de séries formelles à l’étude des corps réel clos et des corps exponentiels, Thèse de doctorat, Univeristé de Paris 7, Paris 1993.
- Max I. Kanovich, Linear logic as a logic of computations, Ann. Pure Appl. Logic 67 (1994), no. 1-3, 183–212. A selection of papers presented at the symposium “Logic at Tver ’92” (Tver′, 1992). MR 1274288, DOI 10.1016/0168-0072(94)90011-6
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Margarita Otero, On Diophantine equations solvable in models of open induction, J. Symbolic Logic 55 (1990), no. 2, 779–786. MR 1056388, DOI 10.2307/2274664
- Margarita Otero, Quadratic forms in normal open induction, J. Symbolic Logic 58 (1993), no. 2, 456–476. MR 1233920, DOI 10.2307/2275215
- Margarita Otero, The joint embedding property in normal open induction, Ann. Pure Appl. Logic 60 (1993), no. 3, 275–290. MR 1216673, DOI 10.1016/0168-0072(93)90079-S
- Wolfram Pohlers, Proof theory, Lecture Notes in Mathematics, vol. 1407, Springer-Verlag, Berlin, 1989. An introduction. MR 1026933, DOI 10.1007/978-3-540-46825-7
- Keith Devlin, The joy of sets, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1993. Fundamentals of contemporary set theory. MR 1237397, DOI 10.1007/978-1-4612-0903-4
- J. P. Ressayre, Survey on transfinite series and their applications, Manuscript 1995.
- Paulo Ribenboim, Théorie des valuations, Séminaire de Mathématiques Supérieures, No. 9 (Été, vol. 1964, Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). Deuxième édition multigraphiée. MR 0249425
- Paulo Ribenboim, Fields: algebraically closed and others, Manuscripta Math. 75 (1992), no. 2, 115–150. MR 1160093, DOI 10.1007/BF02567077
- J. C. Shepherdson, A non-standard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 79–86. MR 161798
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- A. J. Wilkie, Some results and problems on weak systems of arithmetic, Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977) Studies in Logic and the Foundations of Mathematics, vol. 96, North-Holland, Amsterdam-New York, 1978, pp. 285–296. MR 519823
Bibliographic Information
- Alessandro Berarducci
- Affiliation: Università di Pisa, Dipartimento di Matematica, Via Buonarroti 2, 56127 Pisa, Italy
- MR Author ID: 228133
- Email: berardu@dm.unipi.it
- Received by editor(s): September 12, 1996
- Received by editor(s) in revised form: July 22, 1997
- Published electronically: May 20, 1999
- Additional Notes: The results of this paper were presented at the A.S.L. meeting at S. Sebastian, July 9 - 15, 1996, and at the meeting “Model Theory of Fields”, Durham, July 22 - Aug. 1, 1996.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 553-577
- MSC (1991): Primary 06F25; Secondary 13A16, 03H15, 03E10, 12J25, 13A05
- DOI: https://doi.org/10.1090/S0002-9947-99-02172-8
- MathSciNet review: 1473431