Spin $\mathrm {L}$-functions on $GSp_8$ and $Gsp_{10}$
HTML articles powered by AMS MathViewer
- by Daniel Bump and David Ginzburg
- Trans. Amer. Math. Soc. 352 (2000), 875-899
- DOI: https://doi.org/10.1090/S0002-9947-99-02174-1
- Published electronically: July 7, 1999
- PDF | Request permission
Abstract:
The βspinβ L-function of an automorphic representation of $GSp_{2n}$ is an Euler product of degree $2^{n}$ associated with the spin representation of the L-group $\mathrm {GSpin}(2n+1)$. If $n=4$ or $5$, and the automorphic representation is generic in the sense of having a Whittaker model, the analytic properties of these L-functions are studied by the Rankin-Selberg method.References
- Avner Ash, David Ginzburg, and Steven Rallis, Vanishing periods of cusp forms over modular symbols, Math. Ann. 296 (1993), no.Β 4, 709β723. MR 1233493, DOI 10.1007/BF01445131
- Michel Brion, Invariants dβun sous-groupe unipotent maximal dβun groupe semi-simple, Ann. Inst. Fourier (Grenoble) 33 (1983), no.Β 1, 1β27 (French). MR 698847
- Daniel Bump and David Ginzburg, Spin $L$-functions on symplectic groups, Internat. Math. Res. Notices 8 (1992), 153β160. MR 1177328, DOI 10.1155/S1073792892000175
- W. Casselman and J. Shalika, The unramified principal series of $p$-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no.Β 2, 207β231. MR 581582
- David Ginzburg, On spin $L$-functions for orthogonal groups, Duke Math. J. 77 (1995), no.Β 3, 753β798. MR 1324640, DOI 10.1215/S0012-7094-95-07723-0
- David Ginzburg, On standard $L$-functions for $E_6$ and $E_7$, J. Reine Angew. Math. 465 (1995), 101β131. MR 1344132, DOI 10.1515/crll.1995.465.101
- Tamotsu Ikeda, On the location of poles of the triple $L$-functions, Compositio Math. 83 (1992), no.Β 2, 187β237. MR 1174424
- Dihua Jiang, Degree $16$ standard $L$-function of $\textrm {GSp}(2)\times \textrm {GSp}(2)$, Mem. Amer. Math. Soc. 123 (1996), no.Β 588, viii+196. MR 1342020, DOI 10.1090/memo/0588
- HervΓ© Jacquet and Joseph Shalika, Exterior square $L$-functions, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp.Β 143β226. MR 1044830
- Stephen S. Kudla and Stephen Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), no.Β 1, 1β80. MR 1289491, DOI 10.2307/2118540
- David Soudry, Rankin-Selberg convolutions for $\textrm {SO}_{2l+1}\times \textrm {GL}_n$: local theory, Mem. Amer. Math. Soc. 105 (1993), no.Β 500, vi+100. MR 1169228, DOI 10.1090/memo/0500
- San Cao Vo, The spin $L$-function on the symplectic group $\textrm {GSp}(6)$, Israel J. Math. 101 (1997), 1β71. MR 1484868, DOI 10.1007/BF02760921
Bibliographic Information
- Daniel Bump
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- Email: bump@math.stanford.edu
- David Ginzburg
- Affiliation: School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Email: ginzburg@math.tau.ac.il
- Received by editor(s): January 7, 1997
- Received by editor(s) in revised form: May 26, 1997
- Published electronically: July 7, 1999
- Additional Notes: This work was supported in part by NSF Grant DMS-9622819.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 875-899
- MSC (1991): Primary 11F66, 11F46; Secondary 11F70
- DOI: https://doi.org/10.1090/S0002-9947-99-02174-1
- MathSciNet review: 1473433