Closed incompressible surfaces in knot complements
HTML articles powered by AMS MathViewer
- by Elizabeth Finkelstein and Yoav Moriah PDF
- Trans. Amer. Math. Soc. 352 (2000), 655-677 Request permission
Abstract:
In this paper we show that given a knot or link $K$ in a $2n$-plat projection with $n\ge 3$ and $m\ge 5$, where $m$ is the length of the plat, if the twist coefficients $a_{i,j}$ all satisfy $|a_{i,j}|>1$ then $S^3-N(K)$ has at least $2n-4$ nonisotopic essential meridional planar surfaces. In particular if $K$ is a knot then $S^3-N(K)$ contains closed incompressible surfaces. In this case the closed surfaces remain incompressible after all surgeries except perhaps along a ray of surgery coefficients in $\mathbb {Z}\oplus \mathbb {Z}$.References
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237–300. MR 881270, DOI 10.2307/1971311
- D. Cooper and D. D. Long, Derivative varieties and the pure braid group, Amer. J. Math. 115 (1993), no. 1, 137–160. MR 1209237, DOI 10.2307/2374725
- E. Finkelstein, Closed incompressible surfaces in closed braid complements, J. Knot Theory Ramifications 7 (1998), 335–379.
- C. McA. Gordon and J. Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996), no. 2, 385–409. MR 1380506, DOI 10.1016/0040-9383(95)00016-X
- C. McA. Gordon and A. W. Reid, Tangle decompositions of tunnel number one knots and links, J. Knot Theory Ramifications 4 (1995), no. 3, 389–409. MR 1347361, DOI 10.1142/S0218216595000193
- John Hempel, $3$-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR 0415619
- William H. Jaco and Peter B. Shalen, Seifert fibered spaces in $3$-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. MR 539411, DOI 10.1090/memo/0220
- D. Heath and T. Kobayashi, A search method for a thin position of a link, preprint.
- Martin Lustig and Yoav Moriah, Generalized Montesinos knots, tunnels and $\scr N$-torsion, Math. Ann. 295 (1993), no. 1, 167–189. MR 1198847, DOI 10.1007/BF01444882
- María Teresa Lozano and Józef H. Przytycki, Incompressible surfaces in the exterior of a closed $3$-braid. I. Surfaces with horizontal boundary components, Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 2, 275–299. MR 795894, DOI 10.1017/S0305004100063465
- Herbert C. Lyon, Incompressible surfaces in knot spaces, Trans. Amer. Math. Soc. 157 (1971), 53–62. MR 275412, DOI 10.1090/S0002-9947-1971-0275412-6
- W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), no. 1, 37–44. MR 721450, DOI 10.1016/0040-9383(84)90023-5
- Ulrich Oertel, Closed incompressible surfaces in complements of star links, Pacific J. Math. 111 (1984), no. 1, 209–230. MR 732067
- Hamish Short, Some closed incompressible surfaces in knot complements which survive surgery, Low-dimensional topology (Chelwood Gate, 1982) London Math. Soc. Lecture Note Ser., vol. 95, Cambridge Univ. Press, Cambridge, 1985, pp. 179–194. MR 827302, DOI 10.1017/CBO9780511662744.007
- G. Ananda Swarup, On incompressible surfaces in the complements of knots, J. Indian Math. Soc. (N.S.) 37 (1973), 9–24 (1974). MR 362315
- Abigail Thompson, Thin position and bridge number for knots in the $3$-sphere, Topology 36 (1997), no. 2, 505–507. MR 1415602, DOI 10.1016/0040-9383(96)00010-9
- Ying Qing Wu, Incompressibility of surfaces in surgered $3$-manifolds, Topology 31 (1992), no. 2, 271–279. MR 1167169, DOI 10.1016/0040-9383(92)90020-I
- Ying-Qing Wu, The classification of nonsimple algebraic tangles, Math. Ann. 304 (1996), no. 3, 457–480. MR 1375620, DOI 10.1007/BF01446301
Additional Information
- Elizabeth Finkelstein
- Affiliation: Department of Mathematics, (CUNY) Hunter College, New York, New York 10021
- Email: efinkels@shiva.hunter.cuny.edu
- Yoav Moriah
- Affiliation: Department of Mathematics, Technion, Haifa 32000, Israel
- MR Author ID: 238915
- Email: ymoriah@techunix.technion.ac.il
- Received by editor(s): May 23, 1996
- Received by editor(s) in revised form: October 10, 1997
- Published electronically: September 9, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 655-677
- MSC (1991): Primary 57M25, 57M99, 57N10
- DOI: https://doi.org/10.1090/S0002-9947-99-02233-3
- MathSciNet review: 1487613