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RARIFIED SUMS OF THE THUE-MORSE SEQUENCE

MICHAEL DRMOTA AND MARIUSZ SKALBA

ABSTRACT. Let ¢ be an odd number and Sq,0(n) the difference between the
number of £k < n, & = 0mod ¢, with an even binary digit sum and the
corresponding number of k < n, k = 0 mod ¢, with an odd binary digit sum.
A remarkable theorem of Newman says that S3 o0(n) > 0 for all n. In this paper
it is proved that the same assertion holds if g is divisible by 3 or ¢ = 4V + 1.
On the other hand, it is shown that the number of primes ¢ < z with this
property is o(z/log ). Finally, analoga for “higher parities” are provided.

1. INTRODUCTION
The Thue-Morse sequence [9], [5] is defined by
(1) tn = (=1)*",

where s(n) denotes the number of ones in the binary representation of n. For any
positive integer ¢ and ¢ € Z we denote

2 S = S 1
0<j<n,j=i(mod q)

In 1969 Newman [10] proved a remarkable conjecture of L. Moser saying that for
any n > 1

Sg,o(n) > 0.
More precisely, he proved that
3¢ Sg ()(n) . log 3
— < = <53 th a = .
20 < ne < Wi log4

In 1983 Coquet [1] provided an explicit precise formula for S3 o(n) by the use of a
continuous function ts(x) with period 1 which is nowhere differentiable (n3(n) €

{-1,0,1}):
(3) Ss.0(n) = nit -y (ﬁiZ) _ 7735(5”)'

Furthermore, he was able to identify min ([0, 1]) > 0 and max ([0, 1]).

In general, (asymptotic) representations similar to (3) exist for any Sy ;(n) (see
[5] and section 2). But it is a non-trivial problem to decide whether the continuous
function 1, ;(x) has a zero or not. The only known examples where ¥ (x) = 140(x)
has no zero are ¢ = 35! ([6]) and ¢ = 17 ([7]). (Note that the assertion that 1, ;(x)
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has no zero is more or less equivalent to Sy ;(n) > 0 for almost all n or to Sg;(n) < 0
for almost all n; see section 2.)
Our first result provides infinitely many new examples where 14 (z) has no zero.

Theorem 1. Suppose that q is divisible by 3 or ¢ =4~ + 1. Then S, (n) > 0 for
almost all n.

However, if ¢ is prime then we can prove that there are only a few exceptions
(e.g. Fermat primes). Let Py, ¢t > 1, denote the set of those primes p where the
order ord,(2) of 2 in the multiplicative group (Z/pZ)* equals ord,(2) = (p — 1)/t.

Theorem 2. There exists a constant C' > 0 such that for any t > 1 the primes
p € Py satisfying Spo(n) > 0 for almost all n are bounded by

p < Ct?log?t.

Furthermore, the total number of primes p < x with S, o(n) > 0 for almost all n is
o(z/logz) as © — co.

The first part of Theorem 2 generalizes a result by the authors [2], where it is
shown that 3 and 5 are the exceptional primes of P; and 17 and possibly 41 those
of Py. (In fact, p = 41 is not exceptional, see section 3.)

It is surely a very difficult problem to decide whether there are infinitely many
primes p satisfying S, o(n) > 0 for almost all n or not. Unfortunately our methods
are not strong enough to settle this problem. But it should be noted that if there
were only finitely many primes with this property, Theorem 1 would imply that
there were only finitely many Fermat primes.

However, the methods to be developed are essentially sufficient to decide this
problem for any concrete value q. For example, we can prove the following theorem.

Theorem 3. The only primes p < 1000 satisfying Spo(n) > 0 for almost all n are
p=3,5,17,43,257,683.

Note that p = 43 € P3 and p = 683 € P3; are not Fermat primes.?

We will prove Theorems 1 and 2 in sections 4 and 5. The negative part of
Theorem 3 is proved at the end of section 3 and the positive part at the end
of section 4. Section 6 is devoted to the case of higher parities where similar
phenomena appear. In section 2 we collect some basic facts on the fractal structure
of Sy.i(n), and in section 3 we discuss two different kinds of positivity phenomena.

2. Basic FAcTs

For any fixed positive integer ¢ and ¢ € Z, set

4) Sl = Yy,

j<n, j=imodgq

IThe phrase “almost all’ means “all but finitely many’, i.e. there might be finitely many
exceptions.

2Note that both 43 and 684 are of the form (22N+! 4 1)/3. Recently, by extending the
methods of section 4, Leinfellner [8] showed that g of the form (22V+! 4+ 1)/3 have the property
that Sg,0(n) > 0 for almost all n.
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in which n > 0 and y is a (complex) parameter. With help of these expressions we
can determine the numbers

(5) Agirm(n) = |{i<n: j=imod ¢, s(j) =m mod r}|
r—1
1
(6) = ;Zér_mlsq-,i( ivn)v
1=0

where r is a positive integer (which will be called a parity), m € Z, and (. denotes
the r-th primitive root of unity, {, = exp (2’”).

Note that Sqi(y,n), 0 < i < g, satisfies a simple generating relation if n is a
power of 2:

qg—1 k—1 )
(7) Saaly: 296 = T (1+ 62,
=0 7=0

in which {; = exp (%) denotes the g-th primitive root of unity and [ € Z. Hence

we directly obtain

(®) Sy, 25) = 1_1 (1+uc).

1
q9

gM‘T

Moreover, the obvious relation
(9) Sq z(yv 2k + TL/) = Sq,i (y7 2k) + ySq,i—2k (yu TL/) (n/ < 2k)

)

can be used to calculate S, ;(n) inductively for any integer n > 0.
We will further need

(10) Z yS(J) = Z Sq A y7

j<n
and the numbers
(11) Arm(n) = |{j <n: s(j) =mmod r}|
(12 LS s

"=

S(y,2%) is given by
(13) S(y,25) = (1+ )"
and satisfies
S(y, 28 +n) = S(y,2%) +yS(y,n’) (0’ <2F).

Our first aim is to describe the asymptotic behaviour of Ay ;.rm (n). The natural
leading term is %Ar,m(n):

1
(14) Agirym(n) = aAnm (n) + Ry izrm (1)
From (6), (8), (12), and (13) we obtain the representations
r—1 qg—1 k—1

1) Agurn@)= 2 3G G T (1)

l1 0 lo=0 7=0
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and
r—1
ky _ L —lim 11\ F
(16) A (@) =23 G (14 G)
11:0
so that
MR- LS S G (1)
l1 0 l2=1 =

These Fourier expansions will be frequently used in the proofs of our main results.
From now on let ¢ be an odd positive integer and let s = ordy(2) be the order

of the multiplicative subgroup (2) of (Z/gZ)*. (Since we are mainly interested in

Ag0,r,m(n), it is no real restriction to assume that g is odd.) Furthermore, let

SQ(yv Tl) = (Sq-,O(yv n)v s 7Sq-,q—1(y7 n))t

denote the vector of Sy ;(y,n). Let eg,...,e,—1 denote the canonical basis of the
g-dimensional vector space C? and let T denote the matrix defined by Te; = ;41
(eq = €p). The identity matrix is denoted by I.

The following observations are more or less direct generalizations of [5].

Proposition 1. Let M(y) be defined by

(18) M(y) = 1:[ (I+yT2’“).
m=0

Then

(19) Sq(y,2°n) = M(y)Sq(y, n).

Proof. By using the relations s(2j) = s(j) and s(2j + 1) = s(j) + 1 we obtain

Si(y,2n) = >y

j<2n,j=imodgq

= Z ys(zj) + Z ys(2j+1)

2j<2n,2j=imodgq 2j+1<2n,2j+1=imodgq
— s(J s(g
_ S gy 3 e
j<n,j=2—limodgq j<n,j=2-1(i—1)modgq

= Sq72*1i(yan) +ySq72*1(i—l)(yan)'
Hence, denoting by U the matrix defined by Ue; = es;, we have
Sq(y,2n) = (U +yUT)S,(y, n).
By using the property UT = T2U it follows by induction that

(U +yUT)i = (H (I+yT2m)> U,

m=1

Since T? = U® = I, we directly obtain (19) by setting i = s. |
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The eigenvalues of T are exactly the ¢-th roots of unity Cl 0 <1 < q, with

corresponding eigenvectors v; = Z ¢; "e; which are orthogonal. Since M(y) is a

polynomial in T, the eigenvalues of M(y) are given by

s—1
(20) Ny =TT (1+v¢")

m=0
It is clear that A\(y) = A\v(y) if and only if I'(2) = [(2). (Observe that 1 = [(2)
contains ordy/(q,))(2) elements, where (g,1) denotes the greatest common divisor
of ¢ and l.) Appropriately we will write A\j(y) instead of N (y) if I € 1. Let L
denote the system of equivalence classes 1 = [(2). Then a basis of the eigenspace
V1 corresponding to M\(y), 1 € L, is given by v, | € 1. All these eigenspaces are
orthogonal. Py, 1 € L, will denote the orthogonal projection on V;. Furthermore, let
V() denote the eigenspace corresponding to the eigenvalue 0 (if 0 is an eigenvalue),
V() the subspace corresponding to eigenvalues of modulus < 1, V(1) the subspace
corresponding to those of modulus 1, V() corresponding to those with modulus
> 1, and V("™ that corresponding to those eigenvalues with maximal modulus.
Furthermore, let PO, PG PM) P and P(™) denote the orthogonal projections
on VO v y@) y) and V) respectively.

Using these notations and the same methods as in [5], we immediately obtain a

fractal representation for S,(y, n).

Proposition 2. There exists a contiuous function F(y,-) : RT — V) satisfying
F(y,2°z) = M(y)F(y,z) (z>0)

and P, Sq(y,n) = F(y,n). Consequently
_ o(1) if v = {o},

Sq(y,n) =F(y,n) + { O(logn) if V) + {0},

Let [Mi(y)] > 1. Then Gi(y,t) = M(y) 'PiF(y,2%) is a continuous func-
tion Gi(y,-) : R — W which satisfies Gi(y,t + 1) = Gi(y,t). With a(y) =
(log Mi(y))/(slog2) we finally obtain a fractal representation for S,(y, n):

1
y.n) = n WGy 1y, 2 ) + O(log ).
21 S, )G =)+ o
M(y)>1 5208

We want to mention also that it is quite easy to evaluate Gi(y,t) for special
values of ¢t by using the representation (8):

q )
S ?) = 25 G T (1+0e)

q =0 j=0

1 b/s . ;
@) SECLERD W 1 (0]

1 leL lel =

where k = as + b, 0 < b < s. In particular, the first component of Gi(y,0) is
non-zero.

Sometimes it would be more convenient to operate with real exponents instead of
in general complex exponents ay(y). For example, if Aj(y)" is real and positive for
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some positive integer r/, then we can use Gy(y,t) = Ai(y) ™" P1F(y, 2" ") instead
of Gi(y,t) and a1(y) = R(au(y)) instead of ay(y). (Compare with [5].)

For the evaluation of Ay ;;rm(n) we will need S¢((7",n), 0 < m < r. It is an easy
exercise to show that arg(M(¢)) = smm/r +m/x for some m’ € Z. Thus \(¢™)"
is real and A;(¢™)?" > 0. Hence it is always possible to operate with positive
exponents.

Finally, observe that S(y,n) can be treated in a similar fashion as above but
much more easily. Using the relation S(y,2n) = (1+y)S(y, n), it follows that there
is a continuous function F'(y,x) satisfying F(y,2z) = (1 + y)F(y,z) in the case
|1 4+ y| > 1 such that

logn
= F =n® _—
() = Flrn) =G (125 ).
where a(y) = log(1 + y)/log2 and G(y,t) = (1 + y)tF(2%). Furthermore, S(y,n)
=0 if|1+y| <1and S(y,n)=0(ogn) if |1 +y| = 1.
Now the fractal representations for A, ,,(n) and Rg ;.r.m(n) follow immediately.

Theorem 4. Let q,r be positive integers such that q is odd and r > 2. Set

log (2cos T
A og (2cos T) (r>2),

log 2
log | A\ ("
SO V5]

o<m<r,0<l<q Slog2

Furthermore, let v’ be the least positive integer such that \(C™)™ > 0 for those
A(CM), 0< 1< q,0<m<r, with largest modulus.

Then there exist real valued periodic continuous functions VYrm(x), Vg irm(x),
0<m<r, 0<L14<q, with period 1 such that

oy [ O (ifr =2,
o o ne - hrm (2?1%,22) +0(n) (if r>2),
o logn
Rq,i;nm(n) = ne- "/]q,i;nm <m> + O(nﬂ‘”),

where By < o, Bgr < agyr, andn, =0 ifn =0mod 2 andn, =1, ifn =1 mod 2.

Proof. Since A, ,(n) is given by (12) and Ay irm by (6) (compare also with (16)
and (17)), it follows that the asymptotic leading term of A, ,,,(n) —n/r depends on
the largest eigenvalue Ao(¢™) = (1 4+ ¢™)*%, 0 < m < r, and the asymptotic leading
term of R ;.rm(n) on the largest eigenvalue A(¢]*), 0 <l <g¢q, 0 <m <r.

Since |1 + | = 2| cos(™F)| is maximal for m = 1, we immediately obtain the
asymptotic expansion for A, ,,(n). (Note that 3, = log(2 cos 2Z)/log2.)

Furthermore, since \;(1) = 1+Cé+(§l +-- ~+C¢§2S_l)l =0for 0 <l < g, it is clear
that ag,, is the correct exponent in the asymptotic leading term of Ry i.r m (1).

Finally, Az ., (n) can be directly evaluated. O

Remark. In this paper we will only discuss binary digits. But the above concept
easily applies for arbitrary b-ary digit expansions. Let s(j) be a sequence satisfying
s(bn+c¢) = s(n) + s(c) for n > 0 and 0 < ¢ < b. Let Sy(y,n) be defined as above
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and assume that b and ¢ are relatively prime. Then

Sq(y,bn) = (Z T ) 1),

where Upe; = ey, 0 <4 < ¢, and s = ord,(b). Hence S,(y,b°n) = My(y)S,(y, n),
where

()

and we are in the same position as above. All eigenvalues and eigenvectors of M (y)
are known, and we immediately obtain a fractal representation for S,(y,n). (In [5]
only the case b = r is mentioned.)

3. NEWMAN-LIKE PHENOMENA

We want to discuss two kinds of positivity pheonmena:
(N1) Ago.r0(n) > Jmax Ag 0;r,m(n) for almost all n > 0,
(N2) Ry 0:r0(n) >0 for almost all n > 0.
Newman’s theorem Sz ¢(n) > 0 (n > 0) is precisely the same as

A3z 0:2,0(n) > Az 02,1(n).

Therefore (N1) is a natural generalization of this property. Recall that R o.r.m(n)
is the remainder term of Ao,y m(n) if %Ar,m(n) is considered as the “natural”
leading term of A o, m(n) (see section 2). Hence, (N2) means that the remainder
term Rg 0.r0(n) is positive (for almost all n). We will now show that (N1) implies
(N2) if o, # ag,r-

The following lemma provides a necessary condition for (N1).

Lemma 1. If (N1) holds then o, < ag,,.

Proof. Suppose that a; > a4,. In this case (see Theorem 4) the asymptotic
behaviour of Ag0.p.m(n) is determined by A, ,,(n). However, we will show that
A o220y < A, (229117 for all m # 0 mod r and sufficiently large a. There-
fore (N1) cannot occur.

Combining (13) and Theorem 4, we obtain

2k
Apm(28) — — ~ 2R (¢ (L +¢)F).

Since (1 + ¢-)" is real and negative, everything follows. O
Hence, if a, # oy, then (N1) implies
(23) Ry 0.r0(n) > [max Ry 0rm(n)  for almost all n > 0.

Finally, (23) always implies (N2). This follows from the following property.

Lemma 2.
(24) > Ryiwm(n) = O(logn)

foralli=0,...,q—1.
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Proof. From (17) we get

r—1

Z Rq,imm(zk) =

1
0 q;

I MQ

—1 . l
1 27
jl:[o(1+§ )

This means that the asymptotic behaviour of this sum is determined by the eigen-
values A;(1), which are given by

m=

|
—

S

n(1) = (1 n c”’) —1.

7=0

Hence (24) follows. O

Note that there are situations where (N2) holds although (IN1) fails; see The-
orem 8. However, in the “classical” case r = 2 it is easy to verify that (N1) and
(N2) are equivalent to Sqo(—1,n) > 0 (for almost all n).

Before we prove further necessary conditions for (N1) and (IN2), we want to
mention that “converse” phenomena of the form Ay o.r0(n) < Ogﬁi&r Ag0ir,m(n) or

Ry 0.r0(n) < 0 for almost all n > 0 do not exist.

Lemma 3. There exist infinitely many n > 0 such that

(25) Ag0:r0(n) > OI<nn%)<(r Ag0:r,m(n)
and
(26) Ry.0:r.0(n) > 0.

Proof. Let s = ord,(2) and let n = 227%% for some a > 0. Then \(¢%)?"® > 0 for
allle Land I =0,...,¢q— 1. Hence (25) and (26) follow from

1
Agrm(n) = 2 Arm(n) + Ro.oir.m(n)

r—1 re1

1 l 1 !

- E ZCOS <27T7m) )\O(Cal”)2ra + E Z COS <27T17m) Z |1|)\1( 71,1)2“1' 0
=0

11=0 0#£leL

Theorem 5. Let g, be positive integers such that q is odd and r > 2. If s =
ord,(2) and r are coprime or if there exists an integer ' > 0 such that \(¢™)" < 0
for those (™), 0 <l < q, 0 < m < r, with mazimal modulus, then (N1) and
(N2) fail.

Proof. We only prove that (N2) fails. Since A\o(¢,)” < 0, the following proof can
be extended to contradict (N1).

Let L,, denote the set of pairs (1,m),1 € L, 0 < m < r, such that the eigenvalues
A1(¢)") have maximal modulus p. Then the asymptotic leading term of R ;m,0(n)
only depends on these eigenvalues. In particular, we have

S 1 m
Rg.0:m,0(2") ~ o E (™.
q (Im)ELy,

If there exists an integer ' > 0 such that )\1(@”)” < 0 for (1,m) € L,,, then
Ry.0:m.0(29%7517'8) < 0 for all @ > 0.
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Now suppose that r and s are coprime. Since arg(M\(¢7)) = msw/r +nm, where
n € {0,1}, any eigenvalue A(¢") is not real. Set n,m = M(¢7)/p for (1,m) € Ly,.
Then ., are non-real (2r)-th roots of unity. Thus

2r—1

> b, =0,

b=0 (1,m)EL,

and consequently there exists by, 0 < by < 2r, such that

SonEm = > R, < 0.

(1,m)ELy (1,m)ELy

Hence Ry 0.m,0(292757%%) < 0 for sufficiently large a. O

With the help of Theorem 5 we will prove the negative part of Theorem 3 saying
that primes p < 1000, p # 3,5,17,43,257,683, do not satisty S, o(—1,n) > 0 for
almost all n. First, we only have to consider p € Py with ¢ > 2. In [2] it is shown
that p = 3 and p = 5 are the only exceptional primes in Py, and p = 17 and possibly
p = 41 those of Py. (We will treat the case p = 41 in a moment.) Next, it follows
from Theorem 5 that we only have to pay attention to those primes p € Py, t > 2,
with even s = ord,(2), e.g. for p = 109 € P3 we have s = 36. Finally, if there is
k < s with

s—1k—1

si-12 = ST (1= ) <o

=0 i=0

in which \,, = \;,, (—1) is the largest eigenvalue, then S, o(—1,2%%%) < 0 for
sufficiently large a. For example, for p = 109 we have [,,, = 9 and ngg))o(—l, 26) < 0.
Hence, for p = 109 there is no phenomenon of type (N1). Similarly it follows that
Siﬁ))(—l, 28) < 0, and we really have to consider just primes p € P; with ¢ > 2.

Table 1 gives a list of all primes p < 1000, p € Py, t > 2, such that s is even.
Furthermore the largest eigenvalue \,,, = A;, (—1) is represented by [,,,, and if there
is k < s such that 51%)(—17 2%) < 0 then k is listed.

The only primes for which this method provides no answer are p = 43, 257, 683.
At the end of section 4 it will be shown that for these primes S, o(—1,n) > 0 for
almost all n. This completes the proof of the negative part of Theorem 3.

Remark. Tt is also an interesting problem to consider Ag;.rm(n) and Ry i m(n)
(0 < m < r) for some fixed i # 0 mod ¢. For example, it is known that A3 1.2 o(n) <
Az 1.2,1(n) for almost all n > 0 (see [3]). Most of our methods can be applied in
these cases too. However, for the sake of shortness we restrict ourselves to the case
1=0.0



618 MICHAEL DRMOTA AND MARIUSZ SKALBA

TABLE 1

P s| tllm| Kk P s| t| lm| k
43| 14| 3| 7| —|499|166 | 3| 11|12
109 36| 3| 9| 6571 |114| 5| 25|13
113 28| 4| 5|13 || 577|144 | 4| 13|15
157 52| 3| 9| 91 593|148 | 4 9|14
229 | 76| 3| 3| 8| 617|154 | 4| 17|13
241 | 24 |10| 35| 6641 | 64 |10| 43|10
251 | 50| 5| 17| 8| 643|214 3| 11| 6
257 | 16|16 | 43| —| 673 | 48| 14| 51|23
277 92| 3| 3119|683 22|31|113| —
281 | 70| 4|15|161691]|230| 3 3118
283 94| 3| 3| 9| 733 ]|244| 3 9111
307 (102 | 3| 7|14 739|246 | 3 9112
331 30|11 |25 (13| 811|270 | 3 5138
353 | 88| 4| 718|953 | 68|14 | 51|11
397 44| 92317971194 | 5| 25|10
433 | 72| 621131997 (332| 3| 17| 6
457 | 76| 6| 31|20

4. PROOF OF THEOREM 1

In the case of the usual parity r» = 2 we just have to discuss S, ;(—1,n) to obtain
all informations needed. For short we will write S, ;(n), A;, and M instead of
Sqi(—1,m), Ni(—1), and M(—1).

From an heuristic point of view integers of the form ¢ = 4~ +1or g =4 — 1
are ‘good candidates’ for a phenomenon of type (N1). In both cases we have
5(j) =0mod 2 for j =0 mod ¢, j < g4V +1, i.e. Sy0(n) is as positive as possible.
(The first case is trivial. For the second case see Proposition 4.) In fact, Theorem
1 says that Syo(n) > 0 (for almost all n) for these q. However, an heuristic
argument of this kind does not work in all cases. Suppose that ¢ = 22N+1 — 1.
Then s(j) = 1 mod 2 for j = 0mod ¢, j < ¢22N*! + 1, i.e. S, 0(n) is as negative
as possible. Furthermore, s = ordy(2) = 2N + 1 is odd. Hence, by Theorem 5
Sq,0(n) < 0 for infinitely many n. But we know from Lemma 3 that we also have

Sq,0(n) > 0 for infinitely many n.
Let S{™(n) = (Séfg) (n),... ,Séfz)_l(n))t = P(™S,(n). According to the above
considerations it is sufficient to show that

5%) (n) > n(logAn)/(slog2)

where A, denotes the maximal eigenvalue, resp. min ¢g o;m,0 > 0.
First we will discuss the case 3|g, where it is rather easy to identify \,,.
Lemma 4. Suppose that q is a positive odd integer. Then any eigenvalue

s—1

n=TT (1-¢")

m=0

of M is bounded by |\| < 35/2 or )\, = 3%/2.
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The case \; = 3°/2 appears if and only if ¢ = 0mod 3 and | = q/3 mod g or
[ =2¢g/3 mod q.

Proof. 1t is an elementary exercise to show that
1-22<V3 and |(1-2)(1-2%)]<3

if |2| = 1 and |1 — z| > v/3. Furthermore |1 — 22| = /3 if |z| = 1 and |1 — 2| = V/3.

Now let \; = an_zlo (1 — d]?m) be an eigenvalue of M. Let us consider a partition
My, My ,Ms, M3 of the set {0,1,...,s — 1}, where M consists of those m with
11— ¢2"| = /3, My of those with |1 — ¢!2"| > /3, and My = M + 1. It is clear
that either My = () or My = {0,1,...,s—1}. Furthermore M1, My, M3 are pairwise

disjoint. If My = () then
=TT 10 =G =G0 T 1= ¢y < gnlgiel/ = go/2,
me My me Ms

On the other hand, if My = {0,1,...,s— 1}, then s is even and \; = 3°/2. Further-
more, the case My = {0,1,...,s—1} occurs only if ¢ = 0 mod 3 and I = ¢/3 mod ¢
or | =2¢/3 mod q. |

Lemma 5. Suppose that q is an odd multiple of 3. Then

(27) 557’(2‘“>\ < 33’“/2 (0<i<q),
(28) Sim,Eh < 0 (0<j<s),
(29) SRy > \/753*“/2.
Proof. Set w = (3. By (8) we have
(m) ok 1 —ik_l 27 ik_l _oi
Sy (2 ):a w g(l—w )—l—w jl:[o(l—w )

Since w? = w1V and |1 — w*!| = /3, we immediately obtain the estimate (27).
Furthermore,

Ii:[l (1 - wzj) B 3k/2 if k is even,
1l = 3(k—1)/2(1 —w) if k is odd.
j=

Hence
—q~13k/2 if k is even,
Sm@h =14 0 if % is odd and i is even,
—q13(k+1)/2 if k and i are odd,
and

S(m)(2k) [ 2q713k/2 if k is even,
0,0 T ¢ 13t/ if k is odd,

which prove (28) and (29). O
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Now suppose that n = 2F + 62¥~1 4+ where 6 € {0,1} and r < 2¥=1. Then by
using (9), (27), (28), and (29) we immediatly obtain

k—2
SUYm) = SUPEM) = a8, 2R 4+ > 0y Sy ()
7=0
ﬁ_w 23’6/2
- 2 3 q

> 0077 232 3 plosn)/(s1082),
q

This proves Theorem 1 in the case 3|q.

The case ¢ = 4V + 1 is a little bit more involved. The first step is to identify the
largest eigenvalue \,,. Note that s = 4N.
Lemma 6. If ¢ = 4N + 1 then \,, is given by

4N -1

= JT (1-¢2) = e3® (14 0(272)),

Jj=0

where 1, = (¢ +1)/3 and ¢ = 0.363247--- > 0. Moreover, if l € 1, = 1,,(2) then
|)\l| < )\m

Proof. First observe that for 0 <i < N
i 2T 5 i 2
arg (* € 1y = (_W _W) o aggrt el = (‘_W ‘z> :

376 37 3
i 5t 27w i T 27
aul“gfém22N+2 €l = <_F’ —?) ; arg Cém22N+2 e Iy = <§, ?) .

This means that there are exactly N elments Qémy, 0 < i < 4N, satisfying
arg szmy € I;. Furthermore, the eigenvalue )\, is calculated by

H ‘1 147 ‘

N—1 : ,
_ Lo fm T4\ . o (2w 274’
= 1:[ 16 sin (§ + 3—q> sin (? + 37

P12
214"
— G

Am

=0
N
N e (T T Y2 (2R 2T 2N~
= 3 jzl_[lgsm (3+34j)51n (34—34])(14—(’)(2 )
_ 92N OOE~2 m T V. 2 2 —2N
= 3 Jl;[l 5 sin (34—3_4],)5111 <3 + 3 43) (1+0@27*Y))

— C32N (1 + 0(2—2N)) )

If arggl] € I for some I # 0mod ¢, then arg(l?l € I, argC§2Nl € I3, and
argggwﬂl € I;. Hence, the number Ny of elements Cllf?', 0 < i < 4N, satisfy-

ing arg Cffi € I, is always bounded by Ny < N.
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The most interesting case appears if Nyg = N. It is clear that this occurs if and

only if arg (ffi ¢ [-%,%] for all i > 0. Let us classify those = € (0,1) such that
2 = e2m7(1+2)i/3 gatisfies arg 22 ¢ [—%, %} for all ¢ > 0.

Since z ¢ [—%, %] it follows that z ¢ [%’r, %’T}, and consequently z ¢ [51—’27, Z—g} U

[—ﬁ, _E] etc. By induction it follows that argz must be contained in a zero set

quite similar to the Cantor set. More precisely, the only possible values x € (0,1)

are given by
T = Z a4 ",
n>1
where a, € {0,3} and there exist ni,ns > 1 with a,, = 0 and a,, = 3. If z

is in addition a g-th root of unity then z must be of the form = = k/q, where
k=1mod 3and 1 <k < 4" Since
2(p+1)N
1 4N -1 —n
Sl S e
p>0n=2pN+N-+1

we immediately obtain

S =k (4N =147 =3 (= DAY + (4N - 1) = (k- 1))) 47N,

p>1 p>1

and observe that the 4-adic digits a,, of the digit expansion of k/q, 1 < k < 4V,
satisfy a,, € {0,3} for all n > 1 if and only if the 4-adic digit expansion of k£ — 1 has
the same property. (Evidently k¥ = 1 mod 3 in these cases.) This means that if we
choose digits b, € {0,3}, 1 <n < N, and set

N
=1+ bV,

n=1

then

)3

p=>0

N N
( bn4—2Np—n + 2(3 _ bn)4—2Np—N—n> )
1 n=1

n=

In this way we get all g-th roots of unity z = ¢} with arg¢} € Iy U I3 such that
Ny = N. Furthermore, the digits b,, 1 < n < N, encode the distribution of Cf;ll.
If <(l1 = €2ﬂ(1+zo)/3 with 29 = »ZnZl cpd™" (CZNp-i-n = bna CONp+N+n = 3 — b?’u
1 <n < N,p>0), then Cf;"l = 27(142)/3  where x; = Y ons1 Cntid™™. The
periodicity <fz42N+l = Cll;"l is reflected by the periodic digit expansion of zy. In
particular, (ém corresponds to the digits b, = 0, 1 < n < N. This means that
d{“‘“ = 2m(1+@im)/3 are the only g-th roots of unity (with Ng = N), where one
period of the digits of x;y,, contains just one subblock of the form 03. In other words,
there is exactly one element Cém"‘l, 0 <1 < N, satisfying arg Cém‘ll € [197/24, 57 /6],
namely {ém‘lNA. For any other Cfl, I &1, (with Ng = N), there are at least two
subblocks of the form 03 in any period of the digit expansion of zg. Thus there
exist 0 < iy < iy < N with arg(}*", arg ¢!+ € [197/24,57/6]. Consequently

2
A < ?{“ngi2 sin* <12%’T) sin* <%) =0.34899 - 3% < A,
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The case Ny < N is much easier. Let .J; denote the set of j, 0 < j < 4N,
such that arg Cffj € I,. We assume that the elements j;, 0 < i < Ny, of J; =
{jo,j1s--+ sjng—1} are ‘ordered’ in such a way that arg Cffji < arg Cffji'“, 0<i<
No—1. (Recall that |J1] = Np.) Our first aim is to show that for any ¢, 0 < ¢ < N,
we have

(30) arg Cém‘ll < arg Cff“ .

Let b;, 1 < i < N, denote the number of j € J; satisfying arg(ffj e I =

(arg §ém4i71,arg Cém4i). Furthermore set ¢; = <Z< b;. Observe that
1<5<i

(31) ci<i, 1<i<N,

immediately implies (30). Since arg (!> € I, 1 <i < N — 1, implies arg ('~ €
I(H_l), we always have bi+1 >b;. Set a1 = by and a; = b; — bi—h 2 <4< N. Then
a; >0,b;j= Y aj,andc;= ) (i—j+1)a,.

1<5<i 1<5<i

Since ¢y—1 = Ny < N — 1, condition (31) is satisfied for i = N — 1. Now we
show that ¢; < i implies ¢;_1 < i — 1. Suppose that ¢;_; > ¢; then we obtain
ay+---+a; = ¢ —ci—1 <0. Thus a; = 0, 1 < j < 4, which implies ¢;_1 = 0
and contradicts ¢;—1 > 4. This completes the proof of (31) and consequently that
of (30).

Let J5 denote the set of j, 0 < 7 < 4N, such that arg Cffj € (57/6, ), and J3 the
set of those j, 0 < j < 4N, such that argg“f] € (0,7/3). Clearly No+|J2|+|J5| = N
and
127+1

1279 L2t L2
|1_q |'|1_q |<|1_Cq ||1_Cq |

for j € Ja U J3. Therefore we can estimate A; by

vo= o I (R=g2Pr-¢rp)

jeJ1UJ2UJ3

No—1 1294
a. i
11 (16 sin? (%) sin? (arg (2 ))

=0

127 )
H <16 sin? (arg;“q ) sin? (arg Cf])>

JjEJ2UJ3

No—1 argme i
< H 16 sin? Tq sin? (argd]mz)

=0

arg(lmZNﬂ [J2]4] T3]
N—-1
. (16 sin? <+> sin? (arg(émz ))

< Ams

which finishes the proof of Lemma 6. O

In order to complete the proof of Theorem 1 we need an analogon to Lemma 5.
However, the situation is much more delicate. For the following estimates we use
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the notation
2 .y iTo—i) ) _ i
The proof is completely elmentary and just uses the Fourier expansion (8) of

m)(Qk) corresponding to Cém.

32

S,.i(2%), or its dominant term Sé
Lemma 7. Suppose that ¢ = 4~ +1 and 0 < k < 2N. Furthermore, let i = 0 or
i=2F 42k 4 9k i which k < ky < ko < --- <k < 2N, and set

l l

wy = Z(_l)kl/_k’ Wy = Z 21@1/—19’

=1 =1
! l

wy = SN, = 3,

=1 =1

If k = 0 mod 2, then

m gk/2 [ 2Nk T 27 o .
S’é,_)i(Qk) = T<2 j; ¢;j €os (52 J —l—(—l)]?wl +?2 jw2>
b CjioN—k 7T ™ ™
9 j+2N—k . (_1 iT L T9—i  To—j—2N+k
+CO;—CJ- sin ( )6+3 t3
9 92 _
"1‘(—1)]%11}3 + %2_%1}4) + O(Q_k)>
3k/2 2
= T<2(2N— k) Ccos (%’Uh) + Ci(kska, ... ki)

+Cs (ks ki, ... k) + (’)(2"“) + O(2k—2N)> 7

where the constants Cy(k; k1, ... ki), Co(k;k1,... k) are given by

Cl(k;kl,... ,kl)

T 2T 27 . 2m
=9 . —927J —1)7 277 — —
JE>1 (cj Ccos <3 + ( ) 3 wy + 3 w2> coS ( 3 w1)>

CQ(k;k'la e akl)
= 2c Z c; ' sin (—1)jﬁ +Z9-iy (—1)j2—7rw3 + 2—7T2_jw4
0j>1 j 6 ' 3 3 3

™ j27T

— sin <(—1)jg + (~1) §w3>>’

and Co(k; k1, ..., ki) is uniformly bounded by |Co(k;k1,... k)| < 3.64.



624 MICHAEL DRMOTA AND MARIUSZ SKALBA

If k=1 mod 2, then

(m) gk/2 [ 2N_k T o o
Sq—i(2 ") = ' 2 ; ¢jcos | (—1) E+§2 + (—=1)7 ?w1+?2 wy

k

Cj _ T . M 21 2w

+2c0 Yy K gin <§2ﬂ + g2 TN () e+ 2 Jw4>
=9

+027"

k/2 2
— _3q (2(2N— k) cos (% + ?ﬂw3> + Di(k; ki1, ..., ki)

+ Do(k; k1, k) +O27F) + (/)(2lc—2]\7)>7

where the constants Dy (k;ki,... ki), Da(k;k1,... ki) are given by

ST T 2 2m .
Dl(k’;kl,... ,kl)=2Z<CjCOS <(—1)jg+§2 J+(—1)J?w1—|—?2 7w2>

Jj=0

21 2w
Do(k;ky,... K —ZCOZ< sm< 279 4 (=1) —UJ3—|—?2 3w4>

jz1 3
()

and Da(k;k1,... , ki) is uniformly bounded by |Da(k; k1, ... k)| < 2.22.
Corollary 1. Suppose that g =4 +1 and 0 < k <2N. Then

(33) ‘Sf,fri)i@k)‘ < # (22N — k) +3.65), (2" <i<4V +1),
(34) S (28 > { ng:g ((12 ﬁ; k) - 2604 EZ _ (1) 223 3
0 =@ { n(Gan by S502) (1= 1med 2
69 5@z { D Gy T (e
(87) S prn_gera(2h) 2 { giiiﬁiﬁ (( e o > ?339) EIZ o 33
(38) Sy (2) = { qjngz ((\%é\zfzv k)kt$81?2122) EZ i (1) 223 33

where all error terms O(272N) are neglected.
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Proof. (33) follows from Lemma 7 and the fact that

ch- <n+0.05 (n>1).

=1

The constants in (34)—(38) are easy to calculate. |

Now, let 24Ne < p < 24Na+2N for some @ > 0. Then the binary digit expansion
of n is given by

2na+k

_ _ ANa+k—j
n=dody - daNatk = Z d; 27T
=0

in which dp = 1 and 0 < k¥ < 2N. Furthermore, let dj,, 0 < i < s(n), denote
exactly those digits with d;, = 1. Then
s(n)—1

S,S?S)(n): Z (_1)1'5(7”) (24Na+k—j,i)

q,— Mg
i=0

_ SISTS)(24N11+I€) _ 5’2@2;@(24Na+k_j1) + Sé@zk_zk—h (24Na+k—j2) Tl
where
n; = Z dj24Na+h=i,
J<Ji

Since Séf?)(24N“+k) = /\%S’é?(ﬁ), we can use Corollary 1 in order to estimate
S{%(n) and Sg.o(n).

First, suppose that k = 0 mod 2. In the case dy = 1, d; = d2 = d3 = 0 we have
j1 > 4, and consequently

S;TS) (n) = SIETS)(24Na+k) + Z(—l)isﬁ)ﬂji (24N¢l+k—ji)
i>1
Ag 3Fk/2 . —i/2
> 22 (202N — k) +0.831 - (202N — k) + 2i + 3.65)3
4 i>4
A 3k/2
> Zm% (1.474(2N — k) — 2.951).

Hence, if £ < 2N — 3 and k = O0mod 2 (i.e. £ < 2N — 4), then Séjg)(n) > 0. If
do=1,d; =dy =0, d3 =1, then we obtain in the same way

S{%) (n) = 5’;?5)(241\7“%) _ S{S?i)2k(241va+k—3) _i_z(_l)z‘sgwi)n” (24Na+k—ji)
i>2

g 3k/2

Y

<2(2N — k) +0.831 + 373/24.791

> (2N — k) +2i + 3.65)3—i/2>

i>4

P\ 3k/2
Zm (1.474(2N — k) — 2.029).



626 MICHAEL DRMOTA AND MARIUSZ SKALBA
Thus, Sgg)(n) >0if K <2N — 2. Next, let dy =1, dy =0, do = 1. Here we can
verify that
202N — k) +0.831 + 371 ((2N — k +2) — 0.669)
=Y (22N — k) + 2i + 3.65)37/2

>3
- 1.422(2N — k) — 4.363 > 0
for K <2N — 4. In the case dg = dy = 1, do = 0 we have
22N — k) 4+ 0.831 + 371/2.1.453 — 2(2N — k) - 0.456 — 5.638
— 1.088(2N — k) — 3.979 > 0
if K < 2N — 4. Finally, if dy = d; = d3 = 1 we can check that
2(2N — k) 4+ 0.831 +371/2.1.453 + 371 (2(2N — k + 2) — 5.984)
— 2(2N — k) - 0.456 — 5.638 = 1.754(2N — k) — 4.578 > 0
for k < 2N — 3.
Next, suppose that k =1 mod 2. If dg = 1, d; = da = d3 = 0, then
VBN — k) +1.262 -3 (2(2N — k) +2i + 3.65)3‘“2)
>4
— 1.206(2N — k) — 2.52 > 0
for k<2N —3. If dy=1,d, =dy =0, d3 = 1, then
V32N — k) + 1.262 + 373/2((2N — k + 3) — 2.358)
—2(2N — k) - 0.263 — 3.782
= 1.786(2N — k) — 2.397 > 0
for k<2N —2. Ifdy=1,d; =0, dy = 1, then
V32N — k) +1.262 + 37 1(V/3(2N — k +2) — 5.12)
—2(2N — k) - 0.456 — 5.638
= 1.397(2N — k) —4.928 > 0
for kK <2N —4. If dy = dy = 1, dy = 0, then
V32N — k) +1.262+ 37 Y2((2N — k + 1) — 2.674)
— 2(2N — k) - 0.456 — 5.638
= 1.397(2N — k) — 5.343 > 0
for k < 2N — 4. Finally, if dy = dy = d2 = 1, then
V32N — k) +1.262+ 37 Y2((2N — k +1) — 5.12)
+37Y(V3(@2N — k +2) — 3.699) — 2(2N — k) - 0.456 — 5.638
= 1.974(2N — k) — 5.007 > 0

for K <2N — 3.
This implies Sg0(24V9* +...) > 0 if k < 2N — 4. The remaining cases k = 2N,
k=2N —1,k=2N — 2, and k = 2N — 3 must be treated separately.
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First let k = 2N. By Lemma 7 it is easy to calculate S(%)(T’“), S;@Qk (2F=1), etc.

up to an error term O(27F) = O(272V). Let us consider a first example: dy = 1,
dlzo,dgzl,dg,zo, d4:1. We have

SUP (21N F2NY = \a 3N (2.20605 - - + O(27F))
g(m) (24aN+2N—2) _ ya gN—1 (_4.4423 i O(Q—k)) :

q,—22N

S e _ga—a (2R TN = A2 N2 (01559 -+ 0(27H))

and
s(n)—1 . ‘ _
D (=118, (22NN TI < N BN Y (20 4+ 3.56)377/2
i=3 i>5
< 2.4865)\2 3N,
Hence

SiW(n) > 32N (220605 + 3714.4423 — 3720.1559 — 2.4865 + O(272N))
> (3.6695 — 2.4865)3°",

which gives S, o(24N (22 4 22N=2 4 92N=4 4 ...)) > 0 for sufficiently large a.

All other cases can be treated in the same fashion. For completeness all relevant
values are provided in Tables 2-5. The first column corresponds to the leading
digits dodids - - dj of n = 24N (do2% + ;281 + ... 4+ d;2F77 + ...)), the second
one to the (approximate) value of the constant ¢ in

S 2N (A2 + 2 e d,287)) = X3 e O(27)
and the third one to the error estimate

d= Y (22N — k) +2i +3.65)37"/>.
i>j+1

For example, if £ = 2N and do---d; = 10101, then j = 4, ¢ = 3.669508 and
d = 2.4865.

Since ¢ > d, in any case we have proved that S o(n) > 0 for 242V < p < 24eN+2N
if « and N are sufficiently large. The remaining cases 24N +2N < p < 24a+DN cap
be tackled in the same fashion. We just need to find an analoge to Lemma 7 and
to consider several cases. Thus we have proved the second part of Theorem 1 for
sufficiently large N. The above proof has neglected the error terms O(272V). It is
an easy but messy job to take these errors into account. In fact, it turns out that
the above proof gives the second part of Theorem 1 for N > 5. Therefore we just
have to check the two cases N = 3 and N = 4. We omit the details, but it is clear
how to proceed in these cases in order to prove that Sy~ (n) > 0 for almost all
n.

In the same fashion it is possible to prove Syzo(n) > 0 and Sggz,o(n) > 0 for
almost all n. (Of course, a simple computer program assists us.) This completes
the proof of Theorem 3. O
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TABLE 2. k=N TABLE 3. k=N —1
do-'-dj c d d()-"dj c d
100000 | 2.206052 | 1.611 10000 3.82099 | 2.79
100001 | 2.820907 | 1.611 10001 3.96445 | 2.79
10001 2.928609 | 2.4865 10010 4.13854 | 2.79
10010 3.377196 | 2.4865 10011 4.36108 | 2.79
10011 3.609011 | 2.4865 10100 4.16599 | 2.79
10100 3.686833 | 2.4865 10101 3.72492 | 2.79
10101 3.669508 | 2.4865 10110 3.51240 | 2.79
10110 3.456902 | 2.4865 10111 3.75527 | 2.79
10111 3.956975 | 2.4865 11000 3.45378 | 2.79
11000 3.691269 | 2.4865 11001 4.26506 | 2.79
11001 4.500393 | 2.4865 11010 4.27048 | 2.79
1101 4.628219 | 3.781 11011 4.79882 | 2.79
1110 4.908283 | 3.781 11100 4.88619 | 2.79
1111 4.78918 | 3.781 11101 4.67129 | 2.79

11110 4.07916 | 2.79
11111 4.55637 | 2.79

TABLE 4. k=N —2 TABLE 5. k=N -3
d()"'dj C d d()"'dj C d
1000 5.09167 | 4.832 1000 6.65934 | 5.3581
1001 6.11387 | 4.832 1001 7.36031 | 5.3581
1010 6.48795 | 4.832 1010 7.89254 | 5.3581
1011 6.12713 | 4.832 1011 7.13277 | 5.3581
1100 6.26171 | 4.832 1100 7.42538 | 5.3581
1101 7.11082 | 4.832 1101 8.63985 | 5.3581
1110 7.30221 | 4.832 1110 9.29522 | 5.3581
1111 7.18199 | 4.832 1111 8.79174 | 5.3581

5. PROOF OF THEOREM 2
The crucial step of the proof of Theorem 2 is contained in the following lemma.
Lemma 8. Let p be an odd prime number and s = ord,(2). Then
1 s 1 1
(39) Spo(2Fs72) = =) "tk (- - —> :
p 2N 3 iRy

Proof. Since A is real for all eigenvalues Ay = [](1 — g‘j,) and since
lel

S, (2152 = 5 Z AF Z m’

leL lel
(39) follows from

1 1 1
(40) (o)~

in which z € C has modulus |z| = 1. |



RARIFIED SUMS OF THE THUE-MORSE SEQUENCE 629
The next lemma ensures that
2 4 1 — R
1€l CP

for all 1 € L if p € P, is sufficiently large. Hence S, 0(24%5=2) < 0 for all k > 1.

Lemma 9. Suppose that p € Py and that p > (2tlogp)?. Then
3/2

e =t
— R Q2 2 :
= 1—R¢, = 8r*t?logp

Proof. By assumption p > 2tp'/?logp. Hence by the Polya-Vinogradov inequality
[12, p. 86, Aufgabe 12 b]
Hkel: 0<k<2p?logp}| > p'/?logp
for all 1€ L\ {0}. Consequently
1 1 P = 1
PN D Dhry s v =D DY
L RG el 2sin’ (%) 2 !

p* pYPlogp 1 p

212 (2tp'/2logp)?  8w2 t2logp

Now the first part of Theorem 2 follows from the next proposition.

3/2

Proposition 3. Suppose that p € Py satisfies Spo(n) > 0 for almost all n. Then
(41) p/? < 167t logp,
i.e., if Spo(n) >0 for almost all n, then s = ord,(2) < 1672p'/?logp.

Proof. Tt is clear that we just have to consider primes p with p!/2 > 2tlogp. If
p'/? > 1672t 1og p, then Lemma 9 would imply
3/2

s 1 1 D I p
- <=- <0,
2 4 ; 1-%R¢, 2t 3272t2logp

and by using Lemma 8 we would obtain S, o(24**=2) < 0 for all k > 1. O

In order to finish the proof of Theorem 2 we just have to mention a result by
Erdés [4] saying that for any sequence €, — 0 (as p — 00)

~ \logz )

Remark. Theorem 2 also says that the number A; of primes p € P, satisfying
S,.0(n) > 0 for almost all n is bounded by A; < Cp?log® p. However, this bound
can be essentially sharpened. A theorem of Titchmarsh [11, p. 147] says that for
all a, 0 < a < 1, there exists a constant C' = C(a) such that
x
k) < C————

mlwik, 1) o(k)logx
forall 1 < k < 2% and 0 <[ < k with ged(l,k) = 1. Since p € P, satisfies
p=1mod t, we get

(42) {p<a: s=ordy(2) <pt/?ter}

|

Ay = O(t*(logt) /(1))
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Furthermore, ¢(t) > ct/(loglogt) for some constant ¢ > 0 (see [11, p. 24]). Hence
A, = O(tlogtloglogt).

Comparing the above properties with Theorem 4, we find that the fractal func-
tion ¥, (x) = ¥po(x) has a zero near x = 1. It is also an interesting problem to
determine other zeroes and sign changes of ¢, (). In [2] it is shown that for almost
all primes p € Py the fractal function ,(z) has a zero near = 1/2. Furthermore,
a similar result may be expected for Po. If |3(L(2, x))| > 4072p~3/2, where y de-
notes the biquadratic character mod p € Pg, then v, () has a zero near z = 1/2.
Hence there is a connection between zeroes of 1), (x) and properties of Dirichlet L-
series. In what follows we will extend this connection to arbitrary ¢t. However, we
are unable to prove the properties of L-series. Nevertheless by numerical evidence
(see [2]) the zeroes of 1, seem to be very well dispersed. Therefore we conjecture
that the L-series in question satisfy the proposed properties (43) and (44).

Let p € Py, and denote by A, the eigenvalue of largest modulus. If s = ord,(2) is
odd, then all eigenvalues )\; are imaginary and ' = 4, which means that wp(%) <0
corresponds to S(m)( 2(4a+2)s)
Theorem 2 give

< 0. Hence the same arguments as in the proof of

S;l(:g) (2(4a+2)s—2) >0,

providing a sign change of ¢, (x) near x = % for sufficiently large p. If s = ord,(2)
is even, then 2%/2 = —1 mod p, and consequently all eigenvalues \; are real and
positive. Hence A\, > 0 and 7’ = 1. Let A\, = Hf;ol(l — CZZ;"T') and set

s/2—1
J+i
aj= [T =g
i=0
Then
A\ s—1
S}(}Tg)(zas+s/2) — m Zajv
A\ s—1
(m) as+s/2—1 _ m
Sp70(2 / ) = Zl_lzﬂ’
(m) A\ s—1
m as+s/2—2 _ m
Sp70 (2 ) = Z (1— l 2J ( Cl 21+1)'
Since 2°/2 = —1 mod p it follows that Cémy/ = Qp_l"”b. Hence a1 = —ajg“p_lmy
and
s—1
— J
>4 = aoéﬁf"Z yé
=0
s—1 s—1 —1m 27
aj _ Lim G
Zl— . aoGy, Z(_l)Jl_ 127
j=0 P
s—1 s—1 C—lij
P

aj I j
5 Ay = oGy Z(_l) 7 PRSI
e =T CES (R CE
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First, suppose that s = 2 mod 4, i.e. 5/2 is odd. Then @y = a,/; = (—1)5/2a0C§lm
implies that a()(]f)m is imaginary. Since

1 1 1

z(l—z)_z+1—z

1 Sz
C\ _
\y(l—z) T 21— R2)

and

for |z| = 1, we directly get

s—1 L 27 s—1 - L 27
S l ¥ 1 ISG
7: _1 m — 7'

S = S S

Let b be a generator of G = (Z/pZ)*/(4), i.e. all residue classes mod p are parame-
trized by 049, 0 < i <2t —1,0 < j < s/2—1, and i, 1 < k < 2t, Dirichlet
characters doﬁned by xk(b'47) = ¢ik. (Obviously the xx, 1 < k < 2t, constitute the
character group of G.) If

denote the corresponding Gauss sums

s—1

S1=> (1) = Zc’”m (1= (=1)")gy,,

Jj=0

in which b= = I, mod p. Furthermore, its absolute value can be estimated by
|S1] < /p. Now set

JQ"

p—1
=Dk T—hg Zxk mcot =% = (1= (~1M)L(L ).
n=0

Then
1 s—1 i%<lm2j P 2t ki
So==S (1) —2 =i N hing 2L(1, xx)-
2 2];3( ) 1_%@[;“2] o kz ) ) ( 7X7€)

Note that S; and Sy are imaginary. This representation is interesting if |Sz| > \/p.
If sgn(iS1) # sgn(iS2), then it is clear that there is a sign change of ¥,(z) near

= 1. If sgn(iS1) = sgn(iS2), then it is an easy exercise to show that Slgf’g)(2as+s/2)

and SX’S)(Z“S (25/2 4-25/2=1) have different signs. Therefore, if p € P;, s = 2 mod 4,
and

(43) mZg’“m (1—(=1)"2L(1, x)| > 1,

then there is a sign change of ¢, (z) near x = % For example, if p € Py and

p > 163, then Dirichlet’s class number formula and the fact that the class number
h of the corresponding quadratic field satisfies h > 1 show that this case appears

(see [2]).
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Finally, suppose that p € P; and that s/2 is even, i.e. s =0 mod 4. Here aog“ém

is real and consequently S is real, too. Furthermore, R(1/(1 —2)) = 1 for [z = 1.
Hence

s—1 C_lmzj s—1 )
j P i =1 27

Z(—WW = (-1,

j=0 P j=0

and SU¢) (205+9/2) = SUP) (209+5/2-1). Since

1 1 1
8?<z(1—z)(1—z2)) =t T ey

for |z| =1 we obtain as above

s—1 1,927 s—1
. Clm 1 S
(=1) - = S5 ) () ——
; (1= —gm™) 1= 1—R¢m?
p2 2t .
= S g 2 G (- (FDHLER )
k=1
= S51—5;5
Again, if
p3/2 2 i k
(44) P D = (1ML )| > 1
k=1

the above representation yields a sign change of v, (z) near z = 3 if |S3| > /p. (If
sgn(S1) # sgn(Ss3), then consider S’Z(,?S)(2“S(23/2 +28/272))) If p € Py and p > 17,
this concept can be used to prove a sign change of ¢, (x) near x = % (see [2]).

However, if ¢ > 1 we do not know a general concept to decide whether (43) or
(44) are satisfied or not. Nevertheless, it seems to be an interesting problem to
consider linear combinations of values of Dirichlet L-series (with coefficients in a
proper number field) and to quantify lower bounds in terms of p and not only in
terms of the heights of coefficients. We conjecture that (43) and (44) are true for
sufficiently large p > c(t).

6. HIGHER PARITIES

The purpose of this section is to show that Newman’s phenomenon S; o(—1,n) >
0 (which is the same as Ag0;2,0(n) > Ago;2,1(n)) has generalizations for higher
parities 7 > 2. However, the situation is more difficult than in the case r = 2. We
show that direct analoga of Newman’s theorem appear just for » < 6 (Theorem 6).
For r > 6 we do not know whether a phenomonen of type (N1) occurs or not. But
Theorem 2 has a direct analogon (Theorem 10).

Our first observation suggest that ¢ = 2" — 1 is a good choice for a phenomenon
of type (N1) for a parity .

Proposition 4. Let ¢ = 2" — 1, r > 2. Then s(kq) = r for k < 27, i.e.
Aq.0:rm(n) =0 for n < 2% and m # 0 mod r.

Proof. Since k(2"—1) = (k—1)2"4+((2"—1)—(k—1)) it is clear that s(k(2"—1)) = r
ifk—1<2". O
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However, we will prove the following theorem, showing that (N1) holds just for
r < 6.
Theorem 6. The equality
(45) Aor_1 0:r0(n) > 01<n7%><<r Aor_1,0;r,m(n)  for almost all n > 0
holds ezactly for 2 <r < 6.
If » > 6 it is very easy to disprove (45).
Proposition 5. Suppose that r > 6. Then (45) fails.

Proof. We show that o, > ag,. By Lemma 1 this contradicts (45).
The largest eigenvalue \o({™), 0 < m < r, corresponding to a, is given by

Mo(Gr) = (2 cos%)r — o <1 - g—j + (’)(7“_2)) .

Now consider any g-th root of unity sz =e?™0i )<< q(¢g=2"—1). Then
I )
To=— = 212_” = Zc;ﬂ_k
7 5= E>1
has a periodic digit expansion ¢y, = ¢, and for Qfm = e2™m we have
Ty = ch+m2_k.
E>1

Furthermore there exists a ko with cx, = 1 and cgy+1 = 0. Hence 1/2 <z, < 3/4,
and consequently |z, — Tk,+1]| > 1/4. Thus, for any m

min (14 ¢ ¢27 11+ ¢¢2 ™)) < 2c0s %,
which implies
(G < 2 cos ¢

Hence there are only finitely many r > 2 such that a, < a4 ,. It is an easy task to
verify that this occurs exactly for r» < 6. O

First, consider the case r = 3 and set w = (3 = e2™/3. Since

2
Sro(w,n) = > Azozm(n)w™
m=0

(45) is equivalent to the following proposition.

Proposition 6. We have

T
(46) arg (Sro(wn)) € (—5. %
Proof. First, let us determine the corresponding eigenvalues A1 = A(1 2 43 (w), A2 =
As,5,61(w), and A3 = Aoy (w). Set R = (7 +Z +¢F and N = (¢ + (2 + ¢£. Since
R+ N = -1 and

) for almost all n > 0.

6 .
R—N:Z(%)g;’:iﬁ,
=1



634

MICHAEL DRMOTA AND MARIUSZ SKALBA

TABLE 6

J o "o iy i Cia 2

0 18 0 18+2v21 | —=3++v21 | 214+5v21 | —3++21
1] —=3++v21| 2v21 | —3++V21 | 18+ 221 21/21 18 + 4v/21
2| =3+v21| 2v21 | —3—+v21 | —3++21 —2/21 18 +2V/21
3| —=3—-v21|—-2V21|-3-3V21 | -3—-3V21 | —21 —5V21 | —24 — 421
41 =3+v21| 2v21 | —3+3v21 | —3+3v21 2v/21 —3+421
5| -3—-+v21|-2v21 | -3-3v21|-3-3V21 0 —-3-3v21
6| —-3—+v21|—-2V21| —3++v21 | —3—+21 —2v21 —3—+21

we have R = (=1 +1iv/7)/2 and N = (—1 —iy/7)/2. Hence

A=
5

= (0.20871---

(1 +wC)(1+w@)(1+wl) =2+ wR+w?N
T
2

Similarly we obtain A = (1 4+ w(3)(1+w(?)(1 +w?) = (5 +v/21)/2 = 4.79128 - - -
and A3 = (1 +w)3 = —1. Thus, A\, = o is the largest eigenvalue.
Next we will estimate S’%’g) (w,n) = ¢cpo + wdpg. Clearly it is sufficient to prove
that ¢,0 > |dno| for almost all n > 0. For this purpose we define c;-k and d;-k by
(m) ok )\[221
S7(27) = 13
Observe that ¢}, and dj; are periodic in k with period 3. We use (8) in order to
calculate their values. First we have

m 3
S7o (2%) = 2.
Next we obtain
A

l
S = 2 (e + (1 e) + () = 26+ wN)

)\l
- 4_; ((18 +2v21) + (-3 + \/ﬁ)w) ;

Here and in what follows we use the representations

R:(_3+\/2_16>+2\/ﬁw’ :(_3_\/2—16)_2\/5%
Similarly,
Sy (2°72)
= A75“((1 FwC) (L +we@) + (1 + w1 +we) + (1 +wf) (1 +w))
— %12 (38— R)+ (2N — Rw) = % (21 +5v20) + (-3 + v2T)w)

The cases j # 0 can be treated in the same way. Table 6 lists the corresponding
values.
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Now set 8 = )\é/g. Then

|+ |d.
max k | _]k| | _]kl _ §
0<5<7,0<k<3 42 7

Hence, if n = 2% + ... and S’%—L)(w,n) = Cpj + wdyj, then

3 gk .
Jeng| + ldn| < 7755 = 1.0534... 8%
Ifn=2%40-2%"14... then

31

cno = |dno| 2 7 (cho — |dpo]) — 1.05358372 > 0.057 33

Similarly, if n = 23/ 4 23=1 4 ... then

31

B _ _
no — |dnol > VD) (cto — ldool + B3 (—dgg — |chz — dial)) — 1.05353% 2

> (0.087 5%

If n = 231 £ ... then we have to distinguish more cases. In the case n =
2341 1 0. 23 1 0.2%1 ... we immediately obtain
3l

Cno — |dno| > i_z (chy — |dby|) — 1.05356% 72 > 0.23 53,

If n =23+ 4023 4+ 2571 4 ... then

31

B _ _
no — |dno| > Pe) (061 — |doy | + B3 (—dby — |chy — 521)) — 1.05356% 72 > 0.23 5°.

Furthermore, if n = 2341 4230 ... then

31

p _
n0 = Iduol 2 2 (chy = Idiy| — i — Ieho — d)) — 1053551 = 0.16.6%.

Finally, the case n = 232 4 ... can be treated in the same way. Hence

Cno — |dn0| > C)\glogn)/(Zi log 2)

)

and consequently (46). O

Similarly to the first part of Theorem 1, we are also able to provide infinitely
many examples for phenomena of type (N1) for parity r = 3.

Theorem 7. Suppose that r = 3 and that q is an odd multiple of 7. Then (N1)
and (N2) hold.

The essential part of the proof is to identify the largest eigenvalue. This will be
done in the following lemma.

Lemma 10. Suppose that q is a positive odd integer. Then any eigenvalue
s—1
nw) = T (1+w)
m=0
of M(w) is bounded by |\(w)| < ((5+v21)/2)%/3 or N(w) = ((5+ v/21)/2)%/3.
The case \(w) = ((54+/21)/2)*/® appears if and only if ¢ = 0 mod 7 and either
1 =3q/7mod q orl =5¢/7mod q orl =6¢/7 mod q.
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Proof. Let \j(w) = an_:lo (1+ wdﬁm) be an eigenvalue of M (w). If I = 3¢/7 mod ¢
or I = 5¢/7 mod q or | = 6¢/7 mod g, then \j(w) = ((5 + v/21)/2)%/3.

In the remaining cases we use the following partition: My, My = My + 1, M3 =
M1 —|—2, M4, M5 = M4—|— 1, Mg = M4 — 1, M7 of {0,1, , S — 1} M1 consists of
those m such that arg(g‘ffm) € (—4n/7,—27/7) and My of those m which are not
contained in M, and satisfy arg({ffm) € (—8n/7,—4n /7). Set

flx) = 8‘(305(%—}—g>cos(x+%)cos(2x+g),
g(z) = S‘COS(g+g)cos(a:+§)cos(%—g)‘.

Then f(—27/7) = (54 v/21)/2 and
fl@) = (14 we™)(1+we*)(1+ we4ir)| < f(=2n/7)
for x € (—4n/7,—27/7). Hence

11 ‘1+w<f12m‘ < (M)'Mlll

meMiUMsUMs3 2
Similarly, g(x) < f(—2n/7), © € (=8n/7,—4x/7), implies

I e« (M>|M4|.

2
meMy4UMsUMg

Finally, |1 4+ we™®| < f(—2r/7)}/3, 2 € (—4n/7,67/7), provides

1/3
m 54+ v21
1+ w2 < <+T>

for all m € M7, which completes the proof of Lemma 10. O

Now the proof of Theorem 7 is almost the same as the proof of Proposition 6.
Therefore we will not give the details here.
Next, let r = 4. Here we prove.

Proposition 7. We have

. T

(47) arg (51570(1, TL)) S (——, —

4’4

It is easy to verfy that Proposition 7 implies Theorem 6 for » = 4. Since (47) is
equivalent to

) for almost all n > 0.

(48) Ais.0:40(n) — As,04,2(n) > [A15,054,1(n) — Ais,04,3(n)],
we have A1s50.4,0(n) > A15,0.4,2(n). By Theorem 1 (¢ = 15) we also know that
(49) Ats,04,0(n) + Ai5,0.4,2(n) > Ais,014,1(n) + Ai5.0,4,3(n).

Let {k,1} = {1, 3} and suppose that A150.4,%x(n) > A150.4,(n). Then (48) and (49)
imply
Ais04,0(n) > Ai5.04,k(n) > Ais04:(n),

and consequently (45).
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TABLE 7.1
Jl | di chy diy
0] 8 0 8+ 15 1
1l 1] Vis 1 8++15
21 1 | V15 | 1-V15 | 1+/15
30 —-2 0 —2—-415 1
411 | V15 1 —2+15
5| —4 0 4—-+/15 1
6|-2] 0 -2 —4
71 1 | =V15 1 —2-4/15
8| 1 | V15 | 1+V15 | 1+415

9| —2 0 —2-4/15 1
10]-4] 0 —4 -2
11] 1 | —V15 1 —4—4/15
121 -2 0 —24+/15 1
13| 1 | —=/15 1 —-2—-4/15
141 1 | =V15| 1+V15 | 1—-+15

It should also be mentioned that R(Si50(i,n)) > 0 for almost all n is also
sufficient to prove (45). By (6) we have

w

A1s,0.4,m(n) = iS008, n).

1
4
l

Il
=]

Hence R(S15,0(4,n)) > 0 implies Ai5,0.4,0(n) > Ai5.0,4,2(n). Furthermore, by The-
log3
orem 1 S150(—1,n) > nlsi. Consequently we also have

Ai5,0,4,0(n) > max(Ais,0,4,1(n), A15,0:4,3(n))

for sufficienty large n.

Proof of Proposition 7. The computation of the eigenvalues of M (i) can be worked
out explicitly:

Moo= Apoasy = (L+i65)(1+iG5%) (1 +iG5%) (1 +i¢:5°)

14 .

2 — (15 + G15° + (15% + 15"%) — (G15° + ¢15'0) +i ) (1]—5> G5
j=1

= 415,

where (E) denotes the Jacobi-Kronecker symbol. The other eigenvalues are given
by A2 = Af1a711,13) = 4+ V15, A3 = M36,0,12) = 1, As = A5,100 = —1, and by
As = Ajoy = —4. Hence the largest eigenvalue is A2. Now we can proceed as in the
proof of Proposition 6. We just reproduce a table (Tables 7.1 and 7.2) for ¢/; and
d’;, defined by

(5]

2

m) ;. A .
S§5,;(Z, 2k) = W(C;k + Zd;k)' O
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TABLE 7.2

J Clo djy s dis

0| 10+2V15 2 16 + 415 2

1 V15 9+2V15 | 3+V15 | 9+3V15
2 —V/15 9+ 215 1 14 + 315
3| —-10-2V15 2 —9—-2V15| 2415
4 —V15 -1 —2—-V15 | 9+2V15
5/ —9-vV15 | —1-+15 | =14 —/15 | —1+2V/15
6 —V15 -3 —9—-+15 | —3-3V15
7 0 —6 —2v15 -2 —16 — 415
8| 5415 1415 | 6415 -1

9 0 2 1+v15 | —=3—-415
10 =5—+v15 | =1 —V15 | —=2—-+/15 -1

11 0 —6—2v15| 6+2V15 | —6—2V15
12 V15 -3 1 2415
13| 54415 -1-+v15 | 3+V15 ~1-V15
14 V15 -1 1 —6—+15

Finally, let us consider the cases r = 5 and r = 6. In the case r = 5 it suffices to
show that

R (S51,0(¢5,m)) > R (¢ ™ S31,0(C55n)) (m # 0 mod 5),

which can be checked by considering the largest eigenvalue A_1({5) and similar
calculations as above. (Again a simple computer program assists us.)

The case r = 6 is interesting because (45) can be deduced from Theorems 1 and
7. By (6)

5
1 —Im
Ag3,0:6,m(n) = G E G5 "™ S63,0(C6 ).
1=0

By Theorem 7, arg(Ses,0(¢2,n)) € (—7/3,7/3). Thus, for sufficiently large n,
Ag3,0,6,0(n) > max(Aes;0,6,2(n), A63;0,6,4(1)),
since the largest eigenvalue of M((Z) is larger than the largest eigenvalue of M((s).
Furthermore, by Theorem 1 Sg30(—1,71) > ni%gLi, and consequently
Ag3,056,0(n) > max(Ae3;0,6,1(1), A63;0:6,3(1), A63;0:6,5(12))
for sufficientely large n.

Therefore we have provided a complete answer for the case ¢ = 2" — 1 with

respect to (N1). However, the situation is much more delicate when we consider
(N2) instead of (IN1).

Theorem 8. We have
Ri27.0:7,0(n) >0 for almost all n > 0.

This means that (N2) holds for » = 7 although (N1) fails. (We do not give a de-
tailed proof. We only want to mention that it suffices to show that R (S127,0(¢7,n))
> 0.) Therefore it might be possible that (N2) holds for all » > 2. But again the
answer is negative.
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Theorem 9. There are infinitely many r > 2 such that
Ror_1,0:r0(n) <0 for infinitely many n > 0.

Sketch of the Proof. 1t is sufficient to show that there are infinitely many r > 2
such that the eigenvalue \;(("), 0 <1 < 2" —1,0 < m < r, of largest modulus
[Am| is negative. In what follows we will indicate that if there exists a positive
integer m, such that |\/r/m 4+ C —m,| < 1/4 (where C a real constant and r > rq
is sufficiently large), then A (¢ ™) is the eigenvalue of largest modulus

2re—1/2

Am| = [A1(G )] ~ BTN

Since

g () = 3 ( Eo ﬁ) — 71— m,),

4 27 —1 r
7=0

we have sgn(A1(¢. ™)) < 0 if m, is even. Obviously, this case occurs infinitely
many times.

We use the fact that the digit expansion of zg = 1/(2" — 1) = > ,o, k27"
is periodic, i.e. cxir = ck, and that z; = >, o, ;27 satisfies ({2 | = 27w,
(Compare with the proof of Proposition 5.) By considering several subcases it turns
out that if [ is unbounded, then

(G| = 027712,
Conversely, if [ is bounded, then
or—1,-1/2
ey

in which the maximum is attained for |m| ~ \/r/m. Therefore | = 1, |m| ~ \/r/7
is the only relevant case. (Since |1 + CZ”C§]| < |1+ Cr_mﬁg]| (m > 0), we may also
assume that m ~ —/r/m.) A more detailed analysis shows that the maximum
value of [A1(¢;")| is attained for

max [ ()]

me-Y"_¢ + O 1?),
o

in which m is assumed to be a continuous real parameter and C' is a computable
constant. Furthermore, if \/7/m+C is near to an integer m,., e.g. |\/7/7+C—m,| <
1/4, and if r is sufficiently large, then |A,,| = [A1(¢; )| |

We finish this section on higher parities with an analogue to Theorem 2.

Theorem 10. For any r > 1 there exists a constant C,. > 0 such that for anyt > 1
primes q € Py satisfying (N1) or (N2) are bounded by

q < C.t* 1og4 t.

For the proof we can use a similar procedure as above. Instead of (40) we need
the following formula.
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Proposition 8. Suppose that p is an odd prime and s = ord,(2). Ify € C has
modulus |y| = 1, then for anyl € L

1
" <Z T +y<%>>

(50) lel
Z 49 cos(argy/2) )
B 2 4 1€l 1 _%Czl cos((argy)/2+argé}€) '
Proof. From
B 1+ y¢, +y¢* +y*¢*
c Z <1+y<l><1+yc,%l>
1
- Z} (1 +y¢h( 1+y<§l) +; (L4761 +56)
yG,(1+¢,
F 2 Ty o)
we obtain

1 _s 1 yG,(1+ ¢, s 1
%<Z (1T +y¢h) (1 +yc2h) ) 5_52 1+ yC)(1 + yC2h) —5_55(21)7

lel lel

where the mapping y — S(y), y # —Cp_l, is continuous. In particular,

S(-1) =~ Zu_—d——Zl_M

lel

By using a partial fraction expansion it follows that S(y), y # 1, can be represented
by

1—y 1 1—y

Sly) = -
1+yl€1(1+y4l) 1+yl€11+yC2l 1+y§1+y£21
TP

Since S(—1) is finite, it follows that

1
L
>

lel
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and consequently

2y 1 1
Sty) = —L -
L DD <¢p‘1+y<;) c;l—c;,>

lel

— _gg<§: e )
lel (C;D_l + yCZI))(C;D_l - C;l))

Gl —ydh

- ; G+ ye) (G- )
- G G

- S(—1)—
- §<<<;l+y<;,><<;l—<;,> <<;l—<;,>2>

14y
- S(-1)—
V-2 oG T

1 1 1 14y
TN R TR

lel lel

which proves (50). |
The essential difference between the proofs of Theorem 2 and Theorem 10 is that
you have to take into account the sign of
cos(mm/r)
cos(mm /1 +arg(l)

Let 17 denote the set of those I € 1 such that this sign is negative. Then it is an
easy exercise to show that

1 cos(mm /1)
Z 1 — R¢2 cos(mm/r 4 arg (;

7= O, (plogp).
lel—

You only have to verify that 1 — %le > ¢, for I € 17 and that arg (; is different for
different [ € 1. Hence, if p > C,.(tlogp)* (for a sufficiently large constant C,. > 0),
then

1 p3/2 P
— > =+ 0,(pl ,
8m12 t2logp > 2t +Or(plogp)

which implies that (S, 0((™,229°72)) < 0 for sufficiently large a.

T
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