Rarified sums of the Thue-Morse sequence
HTML articles powered by AMS MathViewer
- by Michael Drmota and Mariusz Skałba
- Trans. Amer. Math. Soc. 352 (2000), 609-642
- DOI: https://doi.org/10.1090/S0002-9947-99-02277-1
- Published electronically: August 10, 1999
- PDF | Request permission
Abstract:
Let $q$ be an odd number and $S_{q,0}(n)$ the difference between the number of $k<n$, $k\equiv 0\bmod q$, with an even binary digit sum and the corresponding number of $k<n$, $k\equiv 0\bmod q$, with an odd binary digit sum. A remarkable theorem of Newman says that $S_{3,0}(n)>0$ for all $n$. In this paper it is proved that the same assertion holds if $q$ is divisible by 3 or $q=4^N+1$. On the other hand, it is shown that the number of primes $q\le x$ with this property is $o(x/\log x)$. Finally, analoga for “higher parities” are provided.References
- J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), no. 1, 107–115. MR 707350, DOI 10.1007/BF01393827
- Michael Drmota and Mariusz Skałba, Sign-changes of the Thue-Morse fractal function and Dirichlet $L$-series, Manuscripta Math. 86 (1995), no. 4, 519–541. MR 1324686, DOI 10.1007/BF02568009
- Jean-Marie Dumont, Discrépance des progressions arithmétiques dans la suite de Morse, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 145–148 (French, with English summary). MR 725391
- P. Erdős, Bemerkungen zu einer Aufgabe (Elem. Math. 26 (1971), 43) by G. Jaeschke, Arch. Math. (Basel) 27 (1976), no. 2, 159–163. MR 404166, DOI 10.1007/BF01224655
- Sheldon Goldstein, Kevin A. Kelly, and Eugene R. Speer, The fractal structure of rarefied sums of the Thue-Morse sequence, J. Number Theory 42 (1992), no. 1, 1–19. MR 1176416, DOI 10.1016/0022-314X(92)90104-W
- Peter J. Grabner, A note on the parity of the sum-of-digits function, Séminaire Lotharingien de Combinatoire (Gerolfingen, 1993) Prépubl. Inst. Rech. Math. Av., vol. 1993/34, Univ. Louis Pasteur, Strasbourg, 1993, pp. 35–42. MR 1312627
- P. J. Grabner, T. Herendi, and R. F. Tichy, Fractal digital sums and codes, Appl. Algebra Engin. Comm. Comput. 1 (1997), 33–39.
- H. Leinfellner, Thesis, TU Wien, 1998.
- M. Morse, Reccurent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84–100.
- Donald J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969), 719–721. MR 244149, DOI 10.1090/S0002-9939-1969-0244149-8
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- I. M. Vinogradov, ‘Elemente der Zahlentheorie,’ Oldenbourg, München, 1956.
Bibliographic Information
- Michael Drmota
- Affiliation: Department of Geometry, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
- MR Author ID: 59890
- Email: michael.drmota@tuwien.ac.at
- Mariusz Skałba
- Affiliation: Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
- Email: skalba@mimuw.edu.pl
- Received by editor(s): July 6, 1995
- Received by editor(s) in revised form: December 2, 1997
- Published electronically: August 10, 1999
- Additional Notes: This work was supported by the Austrian Science Foundation, grant Nr. M 00233–MAT
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 609-642
- MSC (1991): Primary 11B85; Secondary 11A63
- DOI: https://doi.org/10.1090/S0002-9947-99-02277-1
- MathSciNet review: 1491859