$L^p$ estimates for nonvariational hypoelliptic operators with $VMO$ coefficients
HTML articles powered by AMS MathViewer
- by Marco Bramanti and Luca Brandolini
- Trans. Amer. Math. Soc. 352 (2000), 781-822
- DOI: https://doi.org/10.1090/S0002-9947-99-02318-1
- Published electronically: September 21, 1999
- PDF | Request permission
Abstract:
Let $X_1,X_2,\ldots ,X_q$ be a system of real smooth vector fields, satisfying Hörmander’s condition in some bounded domain $\Omega \subset \mathbb {R}^n$ ($n>q$). We consider the differential operator \begin{equation*} \mathcal {L}=\sum _{i=1}^qa_{ij}(x)X_iX_j, \end{equation*} where the coefficients $a_{ij}(x)$ are real valued, bounded measurable functions, satisfying the uniform ellipticity condition: \begin{equation*} \mu |\xi |^2\leq \sum _{i,j=1}^qa_{ij}(x)\xi _i\xi _j\leq \mu ^{-1}|\xi |^2 \end{equation*} for a.e. $x\in \Omega$, every $\xi \in \mathbb {R}^q$, some constant $\mu$. Moreover, we assume that the coefficients $a_{ij}$ belong to the space VMO (“Vanishing Mean Oscillation”), defined with respect to the subelliptic metric induced by the vector fields $X_1,X_2,\ldots ,X_q$. We prove the following local $\mathcal {L}^p$-estimate: \begin{equation*} \left \|X_iX_jf\right \|_{\mathcal {L}^p(\Omega ’)}\leq c\left \{\left \|\mathcal {L}f\right \|_{\mathcal {L}^p(\Omega )}+\left \|f\right \|_{\mathcal {L}^p(\Omega )}\right \} \end{equation*} for every $\Omega ’\subset \subset \Omega$, $1<p<\infty$. We also prove the local Hölder continuity for solutions to $\mathcal {L}f=g$ for any $g\in \mathcal {L}^p$ with $p$ large enough. Finally, we prove $\mathcal {L}^p$-estimates for higher order derivatives of $f$, whenever $g$ and the coefficients $a_{ij}$ are more regular.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 277–304 xii (French, with English summary). MR 262881
- Marco Bramanti, Commutators of integral operators with positive kernels, Matematiche (Catania) 49 (1994), no. 1, 149–168 (1995). MR 1386370
- M. Bramanti-L. Brandolini: $\mathcal {L}^p$-estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups. Preprint.
- Marco Bramanti and M. Cristina Cerutti, $W_p^{1,2}$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1735–1763. MR 1239929, DOI 10.1080/03605309308820991
- Marco Bramanti and M. Cristina Cerutti, Commutators of singular integrals on homogeneous spaces, Boll. Un. Mat. Ital. B (7) 10 (1996), no. 4, 843–883 (English, with Italian summary). MR 1430157
- M. Bramanti-M. C. Cerutti: Commutators of fractional integrals in homogeneous spaces. Preprint
- M. Bramanti, M. C. Cerutti, and M. Manfredini, $\scr L^p$ estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl. 200 (1996), no. 2, 332–354. MR 1391154, DOI 10.1006/jmaa.1996.0209
- Nicole Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 3, A139–A142 (French, with English summary). MR 467176
- A.-P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901–921. MR 100768, DOI 10.2307/2372441
- Filippo Chiarenza, Michele Frasca, and Placido Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), no. 1, 149–168. MR 1191890
- Filippo Chiarenza, Michele Frasca, and Placido Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), no. 2, 841–853. MR 1088476, DOI 10.1090/S0002-9947-1993-1088476-1
- Michael Christ, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, vol. 77, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1104656
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19–38. MR 209787, DOI 10.4064/sm-27-1-19-38
- C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 590–606. MR 730094
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- B. Franchi, G. Lu, and R. L. Wheeden, Weighted Poincaré inequalities for Hörmander vector fields and local regularity for a class of degenerate elliptic equations, Potential Anal. 4 (1995), no. 4, 361–375. Potential theory and degenerate partial differential operators (Parma). MR 1354890, DOI 10.1007/BF01053453
- Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 1, 83–117 (English, with Italian summary). MR 1448000
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- A. Eduardo Gatto and Stephen Vági, Fractional integrals on spaces of homogeneous type, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 171–216. MR 1044788
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- J. J. Kohn, Pseudo-differential operators and hypoellipticity, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 61–69. MR 0338592
- E. Lanconelli: Soluzioni deboli non variazionali per una classe di equazioni di tipo Kolmogorov-Fokker-Planck. Sem. di An. Matem. del Dip. di Matematica dell’Univ. di Bologna, 1992-’93.
- E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), no. 1, 29–63. Partial differential equations, II (Turin, 1993). MR 1289901
- Guozhen Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications, Rev. Mat. Iberoamericana 8 (1992), no. 3, 367–439. MR 1202416, DOI 10.4171/RMI/129
- Guozhen Lu, Existence and size estimates for the Green’s functions of differential operators constructed from degenerate vector fields, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1213–1251. MR 1179284, DOI 10.1080/03605309208820883
- Alexander Nagel, Vector fields and nonisotropic metrics, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 241–306. MR 864374
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 11, 6596–6599. MR 634936, DOI 10.1073/pnas.78.11.6596
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- S. Polidoro: Il metodo della parametrice per operatori di tipo Fokker-Planck. Sem. di An. Matem., Dip. di matematica dell’Univ. di Bologna, 1992-93.
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405. MR 377518, DOI 10.1090/S0002-9947-1975-0377518-3
- Antonio Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), no. 1, 143–160. MR 762360, DOI 10.1007/BF01388721
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Giorgio Talenti, Equazioni lineari ellittiche in due variabili, Matematiche (Catania) 21 (1966), 339–376 (Italian). MR 204845
- Chao Jiang Xu, Regularity for quasilinear second-order subelliptic equations, Comm. Pure Appl. Math. 45 (1992), no. 1, 77–96. MR 1135924, DOI 10.1002/cpa.3160450104
Bibliographic Information
- Marco Bramanti
- Affiliation: Dipartimento di Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari, Italy
- MR Author ID: 289427
- Email: marbra@mate.polimi.it
- Luca Brandolini
- Affiliation: Dipartimento di Matematica, Università della Calabria, Arcavacata di Rende, 87036 Rende (CS), Italy
- MR Author ID: 294667
- ORCID: 0000-0002-9670-9051
- Received by editor(s): February 4, 1998
- Published electronically: September 21, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 781-822
- MSC (1991): Primary 35H05; Secondary 35B45, 35R05, 42B20
- DOI: https://doi.org/10.1090/S0002-9947-99-02318-1
- MathSciNet review: 1608289