Banach spaces with the Daugavet property
HTML articles powered by AMS MathViewer
- by Vladimir M. Kadets, Roman V. Shvidkoy, Gleb G. Sirotkin and Dirk Werner
- Trans. Amer. Math. Soc. 352 (2000), 855-873
- DOI: https://doi.org/10.1090/S0002-9947-99-02377-6
- Published electronically: September 17, 1999
- PDF | Request permission
Abstract:
A Banach space $X$ is said to have the Daugavet property if every operator $T: X\to X$ of rank $1$ satisfies $\|\operatorname {Id}+T\| = 1+\|T\|$. We show that then every weakly compact operator satisfies this equation as well and that $X$ contains a copy of $\ell _{1}$. However, $X$ need not contain a copy of $L_{1}$. We also study pairs of spaces $X\subset Y$ and operators $T: X\to Y$ satisfying $\|J+T\|=1+\|T\|$, where $J: X\to Y$ is the natural embedding. This leads to the result that a Banach space with the Daugavet property does not embed into a space with an unconditional basis. In another direction, we investigate spaces where the set of operators with $\|\operatorname {Id}+T\|=1+\|T\|$ is as small as possible and give characterisations in terms of a smoothness condition.References
- Yuri Abramovich, New classes of spaces on which compact operators satisfy the Daugavet equation, J. Operator Theory 25 (1991), no. 2, 331–345. MR 1203038
- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991), no. 1, 215–230. MR 1105660, DOI 10.1016/0022-1236(91)90021-V
- V. F. Babenko and S. A. Pičugov, On a property of compact operators in the space of integrable functions, Ukrain. Mat. Zh. 33 (1981), no. 4, 491–492 (Russian). MR 627725
- Bernard Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland Mathematics Studies, vol. 68, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 86. MR 889253
- Ehrhard Behrends, On the principle of local reflexivity, Studia Math. 100 (1991), no. 2, 109–128. MR 1121711, DOI 10.4064/sm-100-2-109-128
- J. Bourgain, Strongly exposed points in weakly compact convex sets in Banach spaces, Proc. Amer. Math. Soc. 58 (1976), 197–200. MR 415272, DOI 10.1090/S0002-9939-1976-0415272-3
- Gustave Choquet, Lectures on analysis. Vol. II: Representation theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Edited by J. Marsden, T. Lance and S. Gelbart. MR 0250012
- I. K. Daugavet, A property of completely continuous operators in the space $C$, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 157–158 (Russian). MR 0157225
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- P. N. Dowling, W. B. Johnson, C. J. Lennard, and B. Turett, The optimality of James’s distortion theorems, Proc. Amer. Math. Soc. 125 (1997), no. 1, 167–174. MR 1346969, DOI 10.1090/S0002-9939-97-03537-5
- Ciprian Foiaş and Ivan Singer, Points of diffusion of linear operators and almost diffuse operators in spaces of continuous functions, Math. Z. 87 (1965), 434–450. MR 180863, DOI 10.1007/BF01111723
- P. Habala, P. Hájek, and V. Zizler. Introduction to Banach Spaces. Matfyz Press, Prague, 1996.
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- James R. Holub, Daugavet’s equation and operators on $L^1(\mu )$, Proc. Amer. Math. Soc. 100 (1987), no. 2, 295–300. MR 884469, DOI 10.1090/S0002-9939-1987-0884469-8
- V. M. Kadets, Two-dimensional universal Banach spaces, C. R. Acad. Bulgare Sci. 35 (1982), no. 10, 1331–1332 (Russian). MR 694762
- Vladimir M. Kadets, Some remarks concerning the Daugavet equation, Quaestiones Math. 19 (1996), no. 1-2, 225–235. MR 1390483
- V. M. Kadets and M. M. Popov, The Daugavet property for narrow operators in rich subspaces of the spaces $C[0,1]$ and $L_1[0,1]$, Algebra i Analiz 8 (1996), no. 4, 43–62 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 4, 571–584. MR 1418254
- V. M. Kadets and R. V. Shvidkoy. The Daugavet property for pairs of Banach spaces. Math. Analysis, Algebra and Geometry (to appear).
- Vladimir M. Kadets, Roman V. Shvidkoy, Gleb G. Sirotkin, and Dirk Werner, Espaces de Banach ayant la propriété de Daugavet, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 12, 1291–1294 (French, with English and French summaries). MR 1490416, DOI 10.1016/S0764-4442(97)82356-7
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- G. Ja. Lozanovskiĭ, On almost integral operators in $KB$-spaces, Vestnik Leningrad. Univ. 21 (1966), no. 7, 35–44 (Russian, with English summary). MR 0208375
- I. Nazarenko. Paper to appear.
- Anatoliĭ M. Plichko and Mikhail M. Popov, Symmetric function spaces on atomless probability spaces, Dissertationes Math. (Rozprawy Mat.) 306 (1990), 85. MR 1082412
- Michel Talagrand, The three-space problem for $L^1$, J. Amer. Math. Soc. 3 (1990), no. 1, 9–29. MR 1013926, DOI 10.1090/S0894-0347-1990-1013926-7
- L. Weis, Approximation by weakly compact operators in $L_1$, Math. Nachr. 119 (1984), 321–326. MR 774199, DOI 10.1002/mana.19841190128
- Lutz Weis and Dirk Werner, The Daugavet equation for operators not fixing a copy of $C[0,1]$, J. Operator Theory 39 (1998), no. 1, 89–98. MR 1610298
- Dirk Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal. 143 (1997), no. 1, 117–128. MR 1428119, DOI 10.1006/jfan.1996.2979
- P. Wojtaszczyk, Some remarks on the Daugavet equation, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1047–1052. MR 1126202, DOI 10.1090/S0002-9939-1992-1126202-2
Bibliographic Information
- Vladimir M. Kadets
- Affiliation: Faculty of Mechanics and Mathematics, Kharkov State University, pl. Svobody 4 310077 Kharkov, Ukraine
- Address at time of publication: I. Mathematisches Institut, Freie Universität Berlin, Arnimallee 2–6, D-14195 Berlin, Germany
- MR Author ID: 202226
- ORCID: 0000-0002-5606-2679
- Email: kadets@math.fu-berlin.de
- Roman V. Shvidkoy
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: shvidkoy_r@yahoo.com
- Gleb G. Sirotkin
- Affiliation: Department of Mathematics, Indiana University-Purdue University Indianapolis, 402 Blackford Street, Indianapolis, Indiana 46202
- Dirk Werner
- Affiliation: I. Mathematisches Institut, Freie Universität Berlin, Arnimallee 2–6, D-14 195 Berlin, Germany
- Email: werner@math.fu-berlin.de
- Received by editor(s): October 6, 1997
- Published electronically: September 17, 1999
- Additional Notes: The work of the first-named author was done during his visit to Freie Universität Berlin, where he was supported by a grant from the Deutscher Akademischer Austauschdienst. He was also supported by INTAS grant 93-1376.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 855-873
- MSC (1991): Primary 46B20; Secondary 46B04, 47B38
- DOI: https://doi.org/10.1090/S0002-9947-99-02377-6
- MathSciNet review: 1621757