Products and duality in Waldhausen categories
HTML articles powered by AMS MathViewer
- by Michael S. Weiss and Bruce Williams
- Trans. Amer. Math. Soc. 352 (2000), 689-709
- DOI: https://doi.org/10.1090/S0002-9947-99-02552-0
- Published electronically: October 5, 1999
- PDF | Request permission
Abstract:
The natural transformation $\Xi$ from $\mathbf {L}$–theory to the Tate cohomology of $\mathbb {Z} /2$ acting on $\mathbf {K}$–theory commutes with external products. Corollary: The Tate cohomology of $\mathbb {Z} /2$ acting on the $\mathbf {K}$–theory of any ring with involution is a generalized Eilenberg–Mac Lane spectrum, and it is 4–periodic.References
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- A. Adem, R. L. Cohen, and W. G. Dwyer, Generalized Tate homology, homotopy fixed points and the transfer, Algebraic topology (Evanston, IL, 1988) Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 1–13. MR 1022669, DOI 10.1090/conm/096/1022669
- M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125–132. MR 145549, DOI 10.1016/0040-9383(65)90020-0
- M. F. Atiyah and G. B. Segal, Equivariant $K$-theory and completion, J. Differential Geometry 3 (1969), 1–18. MR 259946
- Gunnar Carlsson, Equivariant stable homotopy and Segal’s Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189–224. MR 763905, DOI 10.2307/2006940
- Edward B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107–209 (1971). MR 279808, DOI 10.1016/0001-8708(71)90015-6
- J. P. C.Greenlees and J.P.May, Generalized Tate, Borel and CoBorel Cohomology, University of Chicago Preprint, 1992.
- D. W. Lewis, Forms over real algebras and the multisignature of a manifold, Advances in Math. 23 (1977), no. 3, 272–284. MR 424687, DOI 10.1016/S0001-8708(77)80030-3
- Wen Hsiung Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 449–458. MR 556925, DOI 10.1017/S0305004100056887
- Andrew Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. (3) 40 (1980), no. 1, 87–192. MR 560997, DOI 10.1112/plms/s3-40.1.87
- A. A. Ranicki, Algebraic $L$-theory and topological manifolds, Cambridge Tracts in Mathematics, vol. 102, Cambridge University Press, Cambridge, 1992. MR 1211640
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- Laurence Taylor and Bruce Williams, Surgery spaces: formulae and structure, Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978) Lecture Notes in Math., vol. 741, Springer, Berlin, 1979, pp. 170–195. MR 557167
- Wolrad Vogell, The involution in the algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 277–317. MR 802795, DOI 10.1007/BFb0074448
- C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no. 1, 1–80. MR 432737, DOI 10.2307/1971019
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI 10.1007/BFb0074449
- Michael Weiss and Bruce Williams, Automorphisms of manifolds and algebraic $K$-theory. II, J. Pure Appl. Algebra 62 (1989), no. 1, 47–107. MR 1026874, DOI 10.1016/0022-4049(89)90020-0
- M. Weiss and B. Williams, Automorphisms of manifolds, to appear in one of two C.T.C. Wall 60’th Birthday celebration volumes, 1999.
- Michael Weiss and Bruce Williams, Duality in Waldhausen categories, Forum Math. 10 (1998), no. 5, 533–603. MR 1644309, DOI 10.1515/form.10.5.533
Bibliographic Information
- Michael S. Weiss
- Affiliation: Department of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, U.K.
- MR Author ID: 223956
- Email: m.weiss@maths.abdn.ac.uk
- Bruce Williams
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- Email: williams.4@nd.edu
- Received by editor(s): January 9, 1997
- Published electronically: October 5, 1999
- Additional Notes: Both authors supported in part by NSF grant.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 689-709
- MSC (1991): Primary 57N99, 57R50, 19D10
- DOI: https://doi.org/10.1090/S0002-9947-99-02552-0
- MathSciNet review: 1694381