Decomposition theorems for groups of diffeomorphisms in the sphere
HTML articles powered by AMS MathViewer
- by R. de la Llave and R. Obaya
- Trans. Amer. Math. Soc. 352 (2000), 1005-1020
- DOI: https://doi.org/10.1090/S0002-9947-99-02320-X
- Published electronically: May 20, 1999
- PDF | Request permission
Abstract:
We study the algebraic structure of several groups of differentiable diffeomorphisms in $\mathbf {S}^n$. We show that any given sufficiently smooth diffeomorphism can be written as the composition of a finite number of diffeomorphisms which are symmetric under reflection, essentially one-dimensional and about as differentiable as the given one.References
- Frédéric Bien, Global representations of the diffeomorphism group of the circle, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 89–107. MR 1026949
- Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198, DOI 10.1090/S0273-0979-1982-15004-2
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- Steven G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 1 (1983), no. 3, 193–260. MR 782608
- Joel Langer and David A. Singer, Diffeomorphisms of the circle and geodesic fields on Riemann surfaces of genus one, Invent. Math. 69 (1982), no. 2, 229–242. MR 674403, DOI 10.1007/BF01399503
- R. de la Llave, Remarks on J. Langer and D. A. Singer decomposition theorem for diffeomorphisms of the circle, Comm. Math. Phys. 104 (1986), no. 3, 387–401. MR 840743
- R. de la Llave, R. Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dynamical Systems, 5 (1999), 157–184. Preprint available from http://www.ma.utexas.edu/mp_arc
- Jürgen Moser, A rapidly convergent iteration method and non-linear differential equations. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 499–535. MR 206461
- Helmut Rüssmann, On optimal estimates for the solutions of linear difference equations on the circle, Celestial Mech. 14 (1976), no. 1, 33–37. MR 445973, DOI 10.1007/BF01247129
- E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math. 28 (1975), 91–140. MR 380867, DOI 10.1002/cpa.3160280104
- E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. II, Comm. Pure Appl. Math. 29 (1976), no. 1, 49–111. MR 426055, DOI 10.1002/cpa.3160290104
Bibliographic Information
- R. de la Llave
- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
- Email: llave@math.utexas.edu
- R. Obaya
- Affiliation: Departamento Matemática Aplicada a la Ingeniería, Escuela Superior de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid, Spain
- Email: rafoba@wmatem.eis.uva.es
- Received by editor(s): October 24, 1997
- Published electronically: May 20, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 1005-1020
- MSC (1991): Primary 58D05, 57S25, 57S05
- DOI: https://doi.org/10.1090/S0002-9947-99-02320-X
- MathSciNet review: 1608297