The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras
HTML articles powered by AMS MathViewer
- by K. R. Goodearl and E. S. Letzter
- Trans. Amer. Math. Soc. 352 (2000), 1381-1403
- DOI: https://doi.org/10.1090/S0002-9947-99-02345-4
- Published electronically: October 15, 1999
- PDF | Request permission
Abstract:
We study prime and primitive ideals in a unified setting applicable to quantizations (at nonroots of unity) of $n\times n$ matrices, of Weyl algebras, and of Euclidean and symplectic spaces. The framework for this analysis is based upon certain iterated skew polynomial algebras $A$ over infinite fields $k$ of arbitrary characteristic. Our main result is the verification, for $A$, of a characterization of primitivity established by Dixmier and Moeglin for complex enveloping algebras. Namely, we show that a prime ideal $P$ of $A$ is primitive if and only if the center of the Goldie quotient ring of $A/P$ is algebraic over $k$, if and only if $P$ is a locally closed point – with respect to the Jacobson topology – in the prime spectrum of $A$. These equivalences are established with the aid of a suitable group $\mathcal {H}$ acting as automorphisms of $A$. The prime spectrum of $A$ is then partitioned into finitely many “$\mathcal {H}$-strata” (two prime ideals lie in the same $\mathcal {H}$-stratum if the intersections of their $\mathcal {H}$-orbits coincide), and we show that a prime ideal $P$ of $A$ is primitive exactly when $P$ is maximal within its $\mathcal {H}$-stratum. This approach relies on a theorem of Moeglin-Rentschler (recently extended to positive characteristic by Vonessen), which provides conditions under which $\mathcal {H}$ acts transitively on the set of rational ideals within each $\mathcal {H}$-stratum. In addition, we give detailed descriptions of the strata that can occur in the prime spectrum of $A$. For quantum coordinate rings of semisimple Lie groups, results analogous to those obtained in this paper already follow from work of Joseph and Hodges-Levasseur-Toro. For quantum affine spaces, analogous results have been obtained in previous work of the authors.References
- J. Alev and F. Dumas, Sur le corps des fractions de certaines algèbres quantiques, J. Algebra 170 (1994), no. 1, 229–265 (French, with English summary). MR 1302839, DOI 10.1006/jabr.1994.1336
- Michael Artin, William Schelter, and John Tate, Quantum deformations of $\textrm {GL}_n$, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 879–895. MR 1127037, DOI 10.1002/cpa.3160440804
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- K. A. Brown and K. R. Goodearl, Prime spectra of quantum semisimple groups, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2465–2502. MR 1348148, DOI 10.1090/S0002-9947-96-01597-8
- G. Cauchon, Quotients premiers de $O_q({\mathfrak {m}}_n(k))$, J. Algebra 180 (1996), no. 2, 530–545 (French, with English summary). MR 1378544, DOI 10.1006/jabr.1996.0081
- C. De Concini, V. G. Kac, and C. Procesi, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (1993), no. 2, 405–427. MR 1244875
- Corrado De Concini and Volodimir Lyubashenko, Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), no. 2, 205–262. MR 1296515, DOI 10.1006/aima.1994.1071
- J. Dixmier, Idéaux primitifs dans les algèbres enveloppantes, J. Algebra 48 (1977), no. 1, 96–112 (French). MR 447360, DOI 10.1016/0021-8693(77)90296-4
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- Alfred Goldie and Gerhard Michler, Ore extensions and polycyclic group rings, J. London Math. Soc. (2) 9 (1974/75), 337–345. MR 357500, DOI 10.1112/jlms/s2-9.2.337
- K. R. Goodearl, Uniform ranks of prime factors of skew polynomial rings, Ring theory (Granville, OH, 1992) World Sci. Publ., River Edge, NJ, 1993, pp. 182–199. MR 1344230
- K. R. Goodearl and E. S. Letzter, Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc. 109 (1994), no. 521, vi+106. MR 1197519, DOI 10.1090/memo/0521
- —, Prime and primitive spectra of multiparameter quantum affine spaces, in Trends in Ring Theory. Proc. Miskolc Conf. 1996 (V. Dlab and L. Márki, eds.), Canad. Math. Soc. Conf. Proc. Series 22 (1998), 39-58.
- R. Yue Chi Ming, A note on regular rings, Bull. Soc. Math. Belg. Sér. B 41 (1989), no. 1, 129–138. MR 1044007
- Timothy J. Hodges and Thierry Levasseur, Primitive ideals of $\textbf {C}_q[\textrm {SL}(3)]$, Comm. Math. Phys. 156 (1993), no. 3, 581–605. MR 1240587
- Timothy J. Hodges and Thierry Levasseur, Primitive ideals of $\textbf {C}_q[\textrm {SL}(n)]$, J. Algebra 168 (1994), no. 2, 455–468. MR 1292775, DOI 10.1006/jabr.1994.1239
- Timothy J. Hodges, Thierry Levasseur, and Margarita Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52–92. MR 1440253, DOI 10.1006/aima.1996.1612
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
- Ronald S. Irving, Noetherian algebras and nullstellensatz, Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978) Lecture Notes in Math., vol. 740, Springer, Berlin, 1979, pp. 80–87. MR 563496
- Ronald S. Irving and Lance W. Small, On the characterization of primitive ideals in enveloping algebras, Math. Z. 173 (1980), no. 3, 217–221. MR 592369, DOI 10.1007/BF01159659
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- David A. Jordan, A simple localization of the quantized Weyl algebra, J. Algebra 174 (1995), no. 1, 267–281. MR 1332871, DOI 10.1006/jabr.1995.1128
- Anthony Joseph, Idéaux premiers et primitifs de l’algèbre des fonctions sur un groupe quantique, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 11, 1139–1142 (French, with English and French summaries). MR 1221638
- Anthony Joseph, On the prime and primitive spectra of the algebra of functions on a quantum group, J. Algebra 169 (1994), no. 2, 441–511. MR 1297159, DOI 10.1006/jabr.1994.1294
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- G. Maltsiniotis, Calcul différentiel quantique, Groupe de travail, Université Paris VII, 1992.
- Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Comm. Math. Phys. 123 (1989), no. 1, 163–175. MR 1002037
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- C. Moeglin, Idéaux primitifs des algèbres enveloppantes, J. Math. Pures Appl. (9) 59 (1980), no. 3, 265–336 (French). MR 604473
- C. Moeglin and R. Rentschler, Orbites d’un groupe algébrique dans l’espace des idéaux rationnels d’une algèbre enveloppante, Bull. Soc. Math. France 109 (1981), no. 4, 403–426 (French, with English summary). MR 660144
- —, Idéaux G-rationnels, Rang de Goldie, unpublished manuscript, 1986.
- Ian M. Musson, Ring-theoretic properties of the coordinate rings of quantum symplectic and Euclidean space, Ring theory (Granville, OH, 1992) World Sci. Publ., River Edge, NJ, 1993, pp. 248–258. MR 1344235
- C. Năstăsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, vol. 28, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 676974
- D. G. Northcott, Affine sets and affine groups, London Mathematical Society Lecture Note Series, vol. 39, Cambridge University Press, Cambridge-New York, 1980. MR 569353
- Sei-Qwon Oh, Primitive ideals of the coordinate ring of quantum symplectic space, J. Algebra 174 (1995), no. 2, 531–552. MR 1334223, DOI 10.1006/jabr.1995.1138
- —, Primitive ideals in the coordinate ring of quantum Euclidean space, Bull. Austral. Math. Soc. 58 (1998), 57–73.
- Brian Parshall and Jian Pan Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no. 439, vi+157. MR 1048073, DOI 10.1090/memo/0439
- Daniel Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc. 21 (1969), 171–172. MR 238892, DOI 10.1090/S0002-9939-1969-0238892-4
- Zinovy Reichstein and Nikolaus Vonessen, Torus actions on rings, J. Algebra 170 (1994), no. 3, 781–804. MR 1305265, DOI 10.1006/jabr.1994.1365
- R. Rentschler, Primitive ideals in enveloping algebras (general case), Noetherian rings and their applications (Oberwolfach, 1983) Math. Surveys Monogr., vol. 24, Amer. Math. Soc., Providence, RI, 1987, pp. 37–57. MR 921078, DOI 10.1090/surv/024/04
- N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), no. 4, 331–335. MR 1077966, DOI 10.1007/BF00626530
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- Louis H. Rowen, Ring theory. Vol. I, Pure and Applied Mathematics, vol. 127, Academic Press, Inc., Boston, MA, 1988. MR 940245
- A. Sudbery, Consistent multiparameter quantisation of $\textrm {GL}(n)$, J. Phys. A 23 (1990), no. 15, L697–L704. MR 1068228
- Nikolaus Vonessen, Actions of algebraic groups on the spectrum of rational ideals, J. Algebra 182 (1996), no. 2, 383–400. MR 1391589, DOI 10.1006/jabr.1996.0176
- —, Actions of algebraic groups on the spectrum of rational ideals, II, J. Algebra 208 (1998), 216–261.
- Sleiman Yammine, Les théorèmes de Cohen-Seidenberg en algèbre non commutative, Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978) Lecture Notes in Math., vol. 740, Springer, Berlin, 1979, pp. 120–169 (French). MR 563499
Bibliographic Information
- K. R. Goodearl
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
- MR Author ID: 75245
- Email: goodearl@math.ucsb.edu
- E. S. Letzter
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 113075
- Email: letzter@math.tamu.edu
- Received by editor(s): August 16, 1997
- Published electronically: October 15, 1999
- Additional Notes: The research of the first author was partially supported by NSF grant DMS-9622876, and the research of the second author was partially supported by NSF grant DMS-9623579.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 1381-1403
- MSC (1991): Primary 16S36, 16P40, 81R50
- DOI: https://doi.org/10.1090/S0002-9947-99-02345-4
- MathSciNet review: 1615971