Natural extensions for the Rosen fractions
HTML articles powered by AMS MathViewer
- by Robert M. Burton, Cornelis Kraaikamp and Thomas A. Schmidt
- Trans. Amer. Math. Soc. 352 (2000), 1277-1298
- DOI: https://doi.org/10.1090/S0002-9947-99-02442-3
- Published electronically: October 15, 1999
- PDF | Request permission
Abstract:
The Rosen fractions form an infinite family which generalizes the nearest-integer continued fractions. We find planar natural extensions for the associated interval maps. This allows us to easily prove that the interval maps are weak Bernoulli, as well as to unify and generalize results of Diophantine approximation from the literature.References
- E. Phillips and S. Varadhan (eds.), Ergodic theory, Courant Institute of Mathematical Sciences, New York University, New York, 1975. A seminar held at the Courant Institute of Mathematical Sciences, New York University, New York, 1973–1974; With contributions by S. Varadhan, E. Phillips, S. Alpern, N. Bitzenhofer and R. Adler. MR 0486431
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Henry C. P. Berbee, Random walks with stationary increments and renewal theory, Mathematical Centre Tracts, vol. 112, Mathematisch Centrum, Amsterdam, 1979. MR 547109
- Henry Berbee, Periodicity and absolute regularity, Israel J. Math. 55 (1986), no. 3, 289–304. MR 876396, DOI 10.1007/BF02765027
- Karlheinz Gröchenig and Andrew Haas, Backward continued fractions and their invariant measures, Canad. Math. Bull. 39 (1996), no. 2, 186–198. MR 1390354, DOI 10.4153/CMB-1996-023-8
- Andrew Haas and Caroline Series, The Hurwitz constant and Diophantine approximation on Hecke groups, J. London Math. Soc. (2) 34 (1986), no. 2, 219–234. MR 856507, DOI 10.1112/jlms/s2-34.2.219
- H. Jager and C. Kraaikamp, On the approximation by continued fractions, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 3, 289–307. MR 1020023
- Cor Kraaikamp, The distribution of some sequences connected with the nearest integer continued fraction, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 2, 177–191. MR 898162
- Cor Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), no. 1, 1–39. MR 1093246, DOI 10.4064/aa-57-1-1-39
- Cornelis Kraaikamp and Artur Lopes, The theta group and the continued fraction expansion with even partial quotients, Geom. Dedicata 59 (1996), no. 3, 293–333. MR 1371228, DOI 10.1007/BF00181695
- J. Lehner, Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117–127. MR 819833, DOI 10.1017/S0017089500006121
- J. Lehner, The local Hurwitz constant and Diophantine approximation on Hecke groups, Math. Comp. 55 (1990), no. 192, 765–781. MR 1035937, DOI 10.1090/S0025-5718-1990-1035937-8
- Hitoshi Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), no. 2, 399–426. MR 646050, DOI 10.3836/tjm/1270215165
- Hitoshi Nakada, Continued fractions, geodesic flows and Ford circles, Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992) Plenum, New York, 1995, pp. 179–191. MR 1402490
- Hitoshi Nakada, Shunji Ito, and Shigeru Tanaka, On the invariant measure for the transformations associated with some real continued-fractions, Keio Engrg. Rep. 30 (1977), no. 13, 159–175. MR 498461
- G. J. Rieger, Mischung und Ergodizität bei Kettenbrüchen nach nächsten Ganzen, J. Reine Angew. Math. 310 (1979), 171–181 (German). MR 546670, DOI 10.1515/crll.1979.310.171
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Thomas A. Schmidt, Remarks on the Rosen $\lambda$-continued fractions, Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991) Lecture Notes in Pure and Appl. Math., vol. 147, Dekker, New York, 1993, pp. 227–238. MR 1219337
- H. Weber, Lehrbuch der Algebra, I, 2nd edition, Viehweg, Braunschweig, 1898.
- Jürgen Wolfart, Diskrete Deformation Fuchsscher Gruppen und ihrer automorphen Formen, J. Reine Angew. Math. 348 (1984), 203–220 (German, with English summary). MR 733932, DOI 10.1515/crll.1984.348.203
Bibliographic Information
- Robert M. Burton
- Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
- Email: burton@math.orst.edu
- Cornelis Kraaikamp
- Affiliation: Technische Universiteit Delft & Thomas Stieltjes Institute of Mathematics, ITS (SSOR), Mekelweg 4, 2628 CD Delft, the Netherlands
- Email: c.kraaikamp@its.tudelft.nl
- Thomas A. Schmidt
- Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
- MR Author ID: 307915
- Email: toms@math.orst.edu
- Received by editor(s): August 1, 1997
- Published electronically: October 15, 1999
- Additional Notes: The first author was partially supported by AFOSR grant 93-1-0275 and NSF grant DMS 96-26575. The third author was partially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 1277-1298
- MSC (2000): Primary 11J70, 37A25
- DOI: https://doi.org/10.1090/S0002-9947-99-02442-3
- MathSciNet review: 1650073