Periodic Groups Covered by Transitive Subgroups of Finitary Permutations or by Irreducible Subgroups of Finitary Transformations
HTML articles powered by AMS MathViewer
- by Felix Leinen and Orazio Puglisi
- Trans. Amer. Math. Soc. 352 (2000), 1913-1934
- DOI: https://doi.org/10.1090/S0002-9947-99-02309-0
- Published electronically: December 10, 1999
- PDF | Request permission
Abstract:
Let $\mathfrak {X}$ be either the class of all transitive groups of finitary permutations, or the class of all periodic irreducible finitary linear groups. We show that almost primitive $\mathfrak {X}$-groups are countably recognizable, while totally imprimitive $\mathfrak {X}$-groups are in general not countably recognizable. In addition we derive a structure theorem for groups all of whose countable subsets are contained in totally imprimitive $\mathfrak {X}$-subgroups. It turns out that totally imprimitive $p$-groups in the class $\mathfrak {X}$ are countably recognizable.References
- Brunella Bruno and Richard E. Phillips, Residual properties of finitary linear groups, J. Algebra 166 (1994), no. 2, 379–392. MR 1279264, DOI 10.1006/jabr.1994.1158
- J. L. Bell and A. B. Slomson, Models and ultraproducts: An introduction, North-Holland Publishing Co., Amsterdam-London, 1969. MR 0269486
- V. V. Belyaev, Irreducible periodic groups of finitary transformations, Algebra i Logika 33 (1994), no. 2, 109–134, 228 (Russian, with Russian summary); English transl., Algebra and Logic 33 (1994), no. 2, 65–78 (1995). MR 1296527, DOI 10.1007/BF00739992
- J. I. Hall, Finitary linear transformation groups and elements of finite local degree, Arch. Math. (Basel) 50 (1988), no. 4, 315–318. MR 937332, DOI 10.1007/BF01190224
- J. I. Hall, Locally finite simple groups of finitary linear transformations, Finite and locally finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 147–188. MR 1362809, DOI 10.1007/978-94-011-0329-9_{6}
- J. I. Hall, Periodic simple groups of finitary linear transformations, in preparation.
- K. K. Hickin and R. E. Phillips, Some countably stunted finitary permutation groups, preprint.
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- Karl W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, Berlin-New York, 1970. MR 0279200
- Otto H. Kegel and Bertram A. F. Wehrfritz, Locally finite groups, North-Holland Mathematical Library, Vol. 3, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0470081
- Felix Leinen, Hypercentral unipotent finitary skew linear groups, Comm. Algebra 22 (1994), no. 3, 929–949. MR 1261015, DOI 10.1080/00927879408824886
- F. Leinen, Absolute irreducibility for finitary linear groups, Rend. Sem. Mat. Univ. Padova 92 (1994), 59–61.
- Felix Leinen and Orazio Puglisi, Countable recognizability of primitive periodic finitary linear groups, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 3, 425–435. MR 1434651, DOI 10.1017/S0305004196001454
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- U. Meierfrankenfeld, Ascending subgroups of irreducible finitary linear group, J. London Math. Soc. (2) 51 (1995), no. 1, 75–92. MR 1310723, DOI 10.1112/jlms/51.1.75
- Ulrich Meierfrankenfeld, Richard E. Phillips, and Orazio Puglisi, Locally solvable finitary linear groups, J. London Math. Soc. (2) 47 (1993), no. 1, 31–40. MR 1200975, DOI 10.1112/jlms/s2-47.1.31
- Peter M. Neumann, The lawlessness of groups of finitary permutations, Arch. Math. (Basel) 26 (1975), no. 6, 561–566. MR 412280, DOI 10.1007/BF01229781
- Peter M. Neumann, The structure of finitary permutation groups, Arch. Math. (Basel) 27 (1976), no. 1, 3–17. MR 401928, DOI 10.1007/BF01224634
- Richard E. Phillips, The structure of groups of finitary transformations, J. Algebra 119 (1988), no. 2, 400–448. MR 971142, DOI 10.1016/0021-8693(88)90068-3
- R. E. Phillips, Finitary linear groups: a survey, Finite and locally finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 111–146. MR 1362808
- Derek J. S. Robinson, Finiteness conditions and generalized soluble groups. Part 1, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62, Springer-Verlag, New York-Berlin, 1972. MR 0332989
- Derek John Scott Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York-Berlin, 1982. MR 648604
- B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 76, Springer-Verlag, New York-Heidelberg, 1973. MR 0335656
- B. A. F. Wehrfritz, On the countable recognition of finitary groups, J. London Math. Soc. (2) 55 (1997), no. 2, 297–308. MR 1438633, DOI 10.1112/S0024610797004924
- James Wiegold, Groups of finitary permutations, Arch. Math. (Basel) 25 (1974), 466–469. MR 354879, DOI 10.1007/BF01238707
- H. Wielandt, Unendliche Permutationsgruppen, Vorlesungen an der Universität Tübingen, 1959/60.
- David J. Winter, Representations of locally finite groups, Bull. Amer. Math. Soc. 74 (1968), 145–148. MR 235051, DOI 10.1090/S0002-9904-1968-11913-5
- A. E. Zalesskiĭ, Maximal periodic subgroups of the full linear group over a field with positive characteristic, Vescī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1966 (1966), no. 2, 121–123 (Russian). MR 0194522
Bibliographic Information
- Felix Leinen
- Affiliation: Fachbereich 17 – Mathematik, Johannes Gutenberg–Universität Mainz, D–55099 Mainz, Germany
- Address at time of publication: Department of Mathematics, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England
- Email: f.a.leinen@ncl.ac.uk
- Orazio Puglisi
- Affiliation: Dipartimento di Matematica, Università degli Studi di Trento, I–38050 Povo (Trento), Italy
- Email: puglisi@alpha.science.unitn.it
- Received by editor(s): February 10, 1997
- Received by editor(s) in revised form: October 22, 1997
- Published electronically: December 10, 1999
- Additional Notes: Each of the two authors would like to thank the university of his coauthor for inviting him to a visit, during which essential parts of the work on this paper could be carried out.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 1913-1934
- MSC (1991): Primary 20B07, 20E25, 20F50, 20H20; Secondary 03C20, 20E22
- DOI: https://doi.org/10.1090/S0002-9947-99-02309-0
- MathSciNet review: 1603922