Lorentzian affine hyperspheres with constant affine sectional curvature
HTML articles powered by AMS MathViewer
- by Marcus Kriele and Luc Vrancken
- Trans. Amer. Math. Soc. 352 (2000), 1581-1599
- DOI: https://doi.org/10.1090/S0002-9947-99-02379-X
- Published electronically: July 26, 1999
- PDF | Request permission
Abstract:
We study affine hyperspheres $M$ with constant sectional curvature (with respect to the affine metric $h$). A conjecture by M. Magid and P. Ryan states that every such affine hypersphere with nonzero Pick invariant is affinely equivalent to either \[ (x_{1}^{2} \pm x_{2}^{2})(x_{3}^{2}\pm x_{4}^{2})\dots (x_{2m-1}^{2}\pm x_{2m}^{2}) = 1\] or \[ (x_{1}^{2} \pm x_{2}^{2})(x_{3}^{2}\pm x_{4}^{2})\dots (x_{2m-1}^{2}\pm x_{2m}^{2})x_{2m+1} = 1\] where the dimension $n$ satisfies $n=2m-1$ or $n=2m$. Up to now, this conjecture was proved if $M$ is positive definite or if $M$ is a $3$-dimensional Lorentz space. In this paper, we give an affirmative answer to this conjecture for arbitrary dimensional Lorentzian affine hyperspheres.References
- F. Dillen, M. Magid and L. Vrancken, Affine hyperspheres with constant affine sectional curvature, preprint.
- An Min Li and Gabi Penn, Uniqueness theorems in affine differential geometry. II, Results Math. 13 (1988), no. 3-4, 308–317. Reprinted in Affine Differentialgeometrie [(Oberwolfach, 1986), 308–317, Tech. Univ. Berlin, Berlin, 1988]. MR 941337, DOI 10.1007/BF03323247
- An Min Li, Udo Simon, and Guo Song Zhao, Global affine differential geometry of hypersurfaces, De Gruyter Expositions in Mathematics, vol. 11, Walter de Gruyter & Co., Berlin, 1993. MR 1257186, DOI 10.1515/9783110870428
- Martin A. Magid and Patrick J. Ryan, Flat affine spheres in $\textbf {R}^3$, Geom. Dedicata 33 (1990), no. 3, 277–288. MR 1050415, DOI 10.1007/BF00181334
- Martin A. Magid and Patrick J. Ryan, Affine $3$-spheres with constant affine curvature, Trans. Amer. Math. Soc. 330 (1992), no. 2, 887–901. MR 1062193, DOI 10.1090/S0002-9947-1992-1062193-5
- Katsumi Nomizu and Takeshi Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994. Geometry of affine immersions. MR 1311248
- Katsumi Nomizu and Luc Vrancken, Geodesics in affine differential geometry, Internat. J. Math. 6 (1995), no. 5, 749–766. MR 1351165, DOI 10.1142/S0129167X95000328
- J. Radon, Zur Affingeometrie der Regelflächen, Leipziger Berichte 70 (1918), 147–155.
- Udo Simon, Local classification of two-dimensional affine spheres with constant curvature metric, Differential Geom. Appl. 1 (1991), no. 2, 123–132. MR 1244439, DOI 10.1016/0926-2245(91)90026-6
- Luc Vrancken, An Min Li, and Udo Simon, Affine spheres with constant affine sectional curvature, Math. Z. 206 (1991), no. 4, 651–658. MR 1100847, DOI 10.1007/BF02571370
- Chang Ping Wang, Canonical equiaffine hypersurfaces in $\textbf {R}^{n+1}$, Math. Z. 214 (1993), no. 4, 579–592. MR 1248114, DOI 10.1007/BF02572426
Bibliographic Information
- Marcus Kriele
- Affiliation: Technische Universität Berlin, Fachbereich Mathematik MA 8-3, Strasse des 17 Juni 135, D-10623 Berlin, Germany
- Email: kriele@sfb288.math.tu-berlin.de
- Luc Vrancken
- Affiliation: Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
- Address at time of publication: Technische Universität Berlin, Fachbereich Mathematik, Sekr. MA8-3, Strasse des 17 Juni 135, D-10623 Berlin, Germany
- Email: luc@sfb288.math.tu-berlin.de, luc@sfb288.math.tu-berlin.de
- Received by editor(s): July 10, 1997
- Received by editor(s) in revised form: April 1, 1998
- Published electronically: July 26, 1999
- Additional Notes: The first author was supported by a Research Fellowship of the Research Council of the K.U. Leuven
Research supported by the grant OT/TBA/95/9 of the Research Council of the Katholieke Universiteit Leuven.
The authors would like to thank the referee for improving some arguments in the paper. - © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 1581-1599
- MSC (1991): Primary 53A15
- DOI: https://doi.org/10.1090/S0002-9947-99-02379-X
- MathSciNet review: 1621765
Dedicated: Dedicated to the sixtieth birthday of Udo Simon