Local product structure for Equilibrium States
HTML articles powered by AMS MathViewer
- by Renaud Leplaideur
- Trans. Amer. Math. Soc. 352 (2000), 1889-1912
- DOI: https://doi.org/10.1090/S0002-9947-99-02479-4
- Published electronically: November 17, 1999
- PDF | Request permission
Abstract:
The usual way to study the local structure of Equilibrium State of an Axiom-A diffeomorphism or flow is to use the symbolic dynamic and to push results on the manifold. A new geometrical method is given. It consists in proving that Equilibrium States for Hölder-continuous functions are related to other Equilibrium States of some special sub-systems satisfying a sort of expansiveness. Using different kinds of extensions the local product structure of Gibbs-measure is proven.References
- M. Babillot and F. Ledrappier, Geodesic paths and horocycle flow on abelian covers, Centre de Mathématiques de l’École Polytechnique.
- L. Barreira, Y. Pesin, and J. Schmeling, Dimension of hyperbolic measures – A proof of the Eckmann-Ruelle conjecture, Weierstraß-Institut für Angewandte Analysis und Stochastik, 1996.
- Rufus Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8 (1974/75), no. 3, 193–202. MR 399413, DOI 10.1007/BF01762666
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
- Rufus Bowen and Brian Marcus, Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1977), no. 1, 43–67. MR 451307, DOI 10.1007/BF03007655
- A. Broise, F. Dal’bo, and M. Peigné, Méthode de opérateurs de transferts : Transformations dilatantes de l’intervalle et dénombrement de géodésiques fermées.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Nicolai T. A. Haydn, Canonical product structure of equilibrium states, Random Comput. Dynam. 2 (1994), no. 1, 79–96. MR 1265227
- N. T. A. Haydn and D. Ruelle, Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Comm. Math. Phys. 148 (1992), no. 1, 155–167. MR 1178139
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509–539. MR 819556, DOI 10.2307/1971328
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509–539. MR 819556, DOI 10.2307/1971328
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- David Ruelle, Thermodynamic formalism for maps satisfying positive expansiveness and specification, Nonlinearity 5 (1992), no. 6, 1223–1236. MR 1192516
Bibliographic Information
- Renaud Leplaideur
- Affiliation: Laboratoire de Mathématique et Applications des Mathématiques, Université de Bretagne-Sud, 1, rue de la Loi, 56000 Vannes, France
- Email: Renaud.Le-Plaideur@univ-ubs.fr
- Received by editor(s): June 30, 1997
- Published electronically: November 17, 1999
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 1889-1912
- MSC (2000): Primary 37D20, 37D35
- DOI: https://doi.org/10.1090/S0002-9947-99-02479-4
- MathSciNet review: 1661262