Some properties of partitions in terms of crank
HTML articles powered by AMS MathViewer
- by A. Bülent Eki̇n
- Trans. Amer. Math. Soc. 352 (2000), 2145-2156
- DOI: https://doi.org/10.1090/S0002-9947-00-02306-0
- Published electronically: February 16, 2000
- PDF | Request permission
Abstract:
Let $N(r,m,n)$ (resp. $M(r,m,n))$ denote the number of partitions of $n$ whose ranks (resp. cranks) are congruent to $r$ modulo $m$. Atkin and Swinnerton-Dyer gave the relations between the numbers $N(r,m,mn+k)$ when $m=5,~7$ and $0\leq r,k<m$. Garvan gave the relations between the numbers $M(r,m,mn+k)$ when $m=5,7$, and $11$, $0\leq r,k <m$. Here, we show that the methods of Atkin and Swinnerton-Dyer can be extended to prove the relations for the crank.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews and F. G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 167–171. MR 929094, DOI 10.1090/S0273-0979-1988-15637-6
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- A. O. L. Atkin and S. M. Hussain, Some properties of partitions. II, Trans. Amer. Math. Soc. 89 (1958), 184–200. MR 103872, DOI 10.1090/S0002-9947-1958-0103872-3
- F. J. Dyson, Some Guesses in The Theory of Partitions, Eureka (Cambridge) 8 (1944) 10-15.
- Freeman J. Dyson, Mappings and symmetries of partitions, J. Combin. Theory Ser. A 51 (1989), no. 2, 169–180. MR 1001259, DOI 10.1016/0097-3165(89)90043-5
- F. G. Garvan, New combinatorial interpretations of Ramanujan’s partition congruences mod $5,7$ and $11$, Trans. Amer. Math. Soc. 305 (1988), no. 1, 47–77. MR 920146, DOI 10.1090/S0002-9947-1988-0920146-8
- Frank G. Garvan, Generalizations of Dyson’s rank and non-Rogers-Ramanujan partitions, Manuscripta Math. 84 (1994), no. 3-4, 343–359. MR 1291125, DOI 10.1007/BF02567461
- Richard Lewis, Relations between the rank and the crank modulo $9$, J. London Math. Soc. (2) 45 (1992), no. 2, 222–231. MR 1171550, DOI 10.1112/jlms/s2-45.2.222
- A. B. Ekin, The Rank and The Crank in Theory of Partitions, Ph.D. Thesis, Sussex University, 1993.
- Lasse Winquist, An elementary proof of $p(11m+6)\equiv 0\,(\textrm {mod}\ 11)$, J. Combinatorial Theory 6 (1969), 56–59. MR 236136
Bibliographic Information
- A. Bülent Eki̇n
- Affiliation: Ankara Üni̇versi̇tesi̇, Fen Fakültesi̇, Matemati̇k Bölümü, Tandogan, Ankara, Turkey
- Email: ekin@science.ankara.edu.tr
- Received by editor(s): August 11, 1995
- Received by editor(s) in revised form: January 6, 1998
- Published electronically: February 16, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2145-2156
- MSC (2000): Primary 11P83
- DOI: https://doi.org/10.1090/S0002-9947-00-02306-0
- MathSciNet review: 1603906