Schauder estimates for equationswith fractional derivatives
HTML articles powered by AMS MathViewer
- by Ph. Clément, G. Gripenberg and S-O. Londen
- Trans. Amer. Math. Soc. 352 (2000), 2239-2260
- DOI: https://doi.org/10.1090/S0002-9947-00-02507-1
- Published electronically: February 14, 2000
- PDF | Request permission
Abstract:
The equation \begin{equation*} D^\alpha _t (u-h_1) + D^\beta _x(u-h_2) =f,\quad 0< \alpha ,\beta < 1, \quad t,x \geq 0,\tag {$*$} \end{equation*} where $D^\alpha _t$ and $D^\beta _x$ are fractional derivatives of order $\alpha$ and $\beta$ is studied. It is shown that if $f=f(\underline {t}, \underline {x})$, $h_1=h_1(\underline {x})$, and $h_2=h_2(\underline {t})$ are Hölder-continuous and $f(0,0) =0$, then there is a solution such that $D^\alpha _t u$ and $D^\beta _x u$ are Hölder-continuous as well. This is proved by first considering an abstract fractional evolution equation and then applying the results obtained to ($*$). Finally the solution of ($*$) with $f=1$ is studied.References
- Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. MR 1345385, DOI 10.1007/978-3-0348-9221-6
- Lothar Berg, Asymptotische Darstellungen und Entwicklungen, Hochschulbücher für Mathematik, Band 66, VEB Deutscher Verlag der Wissenschaften, Berlin, 1968 (German). MR 0241873
- Ph. Clément and G. Da Prato, Some results on nonlinear heat equations for materials of fading memory type, J. Integral Equations Appl. 2 (1990), no. 3, 375–391. MR 1094475, DOI 10.1216/jiea/1181075569
- B. Cockburn, G. Gripenberg, and S.-O. Londen, On convergence to entropy solutions of a single conservation law, J. Differential Equations 128 (1996), no. 1, 206–251. MR 1392401, DOI 10.1006/jdeq.1996.0094
- G. Da Prato and P. Grisvard, Sommes d’opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. (9) 54 (1975), no. 3, 305–387 (French). MR 442749
- G. Da Prato and M. Iannelli, Existence and regularity for a class of integro-differential equations of parabolic type, J. Math. Anal. Appl. 112 (1985), no. 1, 36–55. MR 812792, DOI 10.1016/0022-247X(85)90275-6
- G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 285–344 (1988). MR 939631
- Eduard Feireisl and Hana Petzeltová, Singular kernels and compactness in nonlinear conservation laws, J. Differential Equations 142 (1998), no. 2, 291–304. MR 1601864, DOI 10.1006/jdeq.1997.3361
- Gustaf Gripenberg and Stig-Olof Londen, Fractional derivatives and smoothing in nonlinear conservation laws, Differential Integral Equations 8 (1995), no. 8, 1961–1976. MR 1348960
- Pierre Grisvard, Commutativité de deux foncteurs d’interpolation et applications, J. Math. Pures Appl. (9) 45 (1966), 207–290 (French). MR 221310
- Pierre Grisvard, Équations différentielles abstraites, Ann. Sci. École Norm. Sup. (4) 2 (1969), 311–395 (French). MR 270209
- Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. MR 1329547, DOI 10.1007/978-3-0348-9234-6
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR 1238939, DOI 10.1007/978-3-0348-8570-6
- Eugenio Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), no. 1, 16–66. MR 786012, DOI 10.1016/0022-247X(85)90353-1
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- Ph. Clément
- Affiliation: Faculty of Technical Mathematics, and Informatics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
- Email: clement@twi.tudelft.nl
- G. Gripenberg
- Affiliation: Institute of Mathematics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
- Email: gustaf.gripenberg@hut.fi
- S-O. Londen
- Affiliation: Institute of Mathematics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
- Email: stig-olof.londen@hut.fi
- Received by editor(s): March 20, 1997
- Received by editor(s) in revised form: September 29, 1997
- Published electronically: February 14, 2000
- Additional Notes: The third author acknowledges the partial support of the Nederlandse organisatie voor wetenschappelijk onderzoek (NWO)
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2239-2260
- MSC (2000): Primary 35K99, 45K05
- DOI: https://doi.org/10.1090/S0002-9947-00-02507-1
- MathSciNet review: 1675170