Statistical properties for nonhyperbolic maps with finite range structure
HTML articles powered by AMS MathViewer
- by Michiko Yuri
- Trans. Amer. Math. Soc. 352 (2000), 2369-2388
- DOI: https://doi.org/10.1090/S0002-9947-00-02579-4
- Published electronically: February 14, 2000
- PDF | Request permission
Abstract:
We establish the central limit theorem and non-central limit theorems for maps admitting indifferent periodic points (the so-called intermittent maps). We also give a large class of Darling-Kac sets for intermittent maps admitting infinite invariant measures. The essential issue for the central limit theorem is to clarify the speed of $L^1$-convergence of iterated Perron-Frobenius operators for multi-dimensional maps which satisfy Renyi’s condition but fail to satisfy the uniformly expanding property. Multi-dimensional intermittent maps typically admit such derived systems. There are examples in section 4 to which previous results on the central limit theorem are not applicable, but our extended central limit theorem does apply.References
- Jon Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. Analyse Math. 39 (1981), 203–234. MR 632462, DOI 10.1007/BF02803336
- Jon. Aaronson, Random $f$-expansions, Ann. Probab. 14 (1986), no. 3, 1037–1057. MR 841603
- Mona Khare, Fuzzy $\sigma$-algebras and conditional entropy, Fuzzy Sets and Systems 102 (1999), no. 2, 287–292. MR 1674971, DOI 10.1016/S0165-0114(97)00116-4
- Jon Aaronson and Manfred Denker, Lower bounds for partial sums of certain positive stationary processes, Almost everywhere convergence (Columbus, OH, 1988) Academic Press, Boston, MA, 1989, pp. 1–9. MR 1035234
- J. Aaronson and M. Denker. Local limit theorems for Gibbs Markov maps. Preprint.
- Jon Aaronson, Manfred Denker, and Albert M. Fisher, Second order ergodic theorems for ergodic transformations of infinite measure spaces, Proc. Amer. Math. Soc. 114 (1992), no. 1, 115–127. MR 1099339, DOI 10.1090/S0002-9939-1992-1099339-4
- Jon Aaronson, Manfred Denker, and Mariusz Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), no. 2, 495–548. MR 1107025, DOI 10.1090/S0002-9947-1993-1107025-2
- Richard C. Bradley Jr., On the $\psi$-mixing condition for stationary random sequences, Trans. Amer. Math. Soc. 276 (1983), no. 1, 55–66. MR 684493, DOI 10.1090/S0002-9947-1983-0684493-5
- Anne Broise, Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France 124 (1996), no. 1, 97–139 (French, with English and French summaries). MR 1395008
- N. I. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems, Probab. Theory Related Fields 101 (1995), no. 3, 321–362. MR 1324089, DOI 10.1007/BF01200500
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Richard A. Davis, Stable limits for partial sums of dependent random variables, Ann. Probab. 11 (1983), no. 2, 262–269. MR 690127
- P. Gaspard and X.-J. Wang, Sporadicity: between periodic and chaotic dynamical behaviors, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 13, 4591–4595. MR 949187, DOI 10.1073/pnas.85.13.4591
- M. I. Gordin, Exponentially rapid mixing, Dokl. Akad. Nauk SSSR 196 (1971), 1255–1258 (Russian). MR 0277015
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
- Shunji Ito and Michiko Yuri, Number theoretical transformations with finite range structure and their ergodic properties, Tokyo J. Math. 10 (1987), no. 1, 1–32. MR 899469, DOI 10.3836/tjm/1270141789
- C. Liverani. Flows, random perturbations and rate of mixing. Ergodic Theory and Dynamical Systems 18 (1998), 1421-1446.
- C. Liverani, B. Saussall, and S. Vaianti. A probabilistic approach to Intermittency. Preprint.
- Dieter H. Mayer, Approach to equilibrium for locally expanding maps in $\textbf {R}^{k}$, Comm. Math. Phys. 95 (1984), no. 1, 1–15. MR 757051
- M. Pollicott. Rates of mixing for potentials of summable variation. Trans. Amer. Math. Soc., to appear.
- F. Schweiger and M. Waterman, Some remarks on Kuzmin’s theorem for $F$-expansions, J. Number Theory 5 (1973), 123–131. MR 319905, DOI 10.1016/0022-314X(73)90065-6
- Fritz Schweiger, Ergodic theory of fibred systems and metric number theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 1419320
- Maximilian Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math. 37 (1980), no. 4, 303–314. MR 599464, DOI 10.1007/BF02788928
- Maximilian Thaler, Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math. 46 (1983), no. 1-2, 67–96. MR 727023, DOI 10.1007/BF02760623
- Michael S. Waterman, Some ergodic properties of multi-dimensional $f$-expansions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 77–103. MR 282939, DOI 10.1007/BF00535691
- Michiko Yuri, On a Bernoulli property for multidimensional mappings with finite range structure, Tokyo J. Math. 9 (1986), no. 2, 457–485. MR 875201, DOI 10.3836/tjm/1270150732
- Michiko Yuri, Invariant measures for certain multi-dimensional maps, Nonlinearity 7 (1994), no. 3, 1093–1124. MR 1275543
- Michiko Yuri, Multi-dimensional maps with infinite invariant measures and countable state sofic shifts, Indag. Math. (N.S.) 6 (1995), no. 3, 355–383. MR 1351153, DOI 10.1016/0019-3577(95)93202-L
- Michiko Yuri, On the convergence to equilibrium states for certain non-hyperbolic systems, Ergodic Theory Dynam. Systems 17 (1997), no. 4, 977–1000. MR 1468111, DOI 10.1017/S0143385797086240
- M. Yuri. Zeta functions for certain nonhyperbolic systems and topological Markov approximations. Ergodic Theory and Dynamical Systems 18 (1998), 1589-1612.
- Michiko Yuri, Decay of correlations for certain multi-dimensional maps, Nonlinearity 9 (1996), no. 6, 1439–1461. MR 1419454, DOI 10.1088/0951-7715/9/6/003
- M. Yuri. Thermodynamic Formalism for certain nonhyperbolic maps. To appear in Ergodic Theory and Dynamical Systems.
- R. Zweimuller. Probabilistic properties of dynamical systems with infinite invariant measures, Univ. Salzburg M.Sc. thesis (1995).
Bibliographic Information
- Michiko Yuri
- Affiliation: Department of Business Administration, Sapporo University, Nishioka, Toyohira-ku, Sapporo 062, Japan
- Email: yuri@math.sci.hokudai.ac.jp, yuri@math-ext.sapporo-u.ac.jp
- Received by editor(s): February 20, 1998
- Published electronically: February 14, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2369-2388
- MSC (2000): Primary 11K50, 11K55, 28D05, 58F03, 58F11, 58F15
- DOI: https://doi.org/10.1090/S0002-9947-00-02579-4
- MathSciNet review: 1695039