Topological Hochschild homology of number rings
HTML articles powered by AMS MathViewer
- by Ayelet Lindenstrauss and Ib Madsen
- Trans. Amer. Math. Soc. 352 (2000), 2179-2204
- DOI: https://doi.org/10.1090/S0002-9947-00-02611-8
- Published electronically: February 16, 2000
- PDF | Request permission
Abstract:
We calculate an explicit formula for the topological Hochschild homology of a discrete valuation ring of characteristic zero with finite residue field. From this we deduce the topological Hochschild homology of global number rings.References
- M. Bökstedt, Topological Hochschild homology, preprint (Bielefeld).
- M. Bökstedt, Topological Hochschild homology of $\mathbf {Z}$ and $\mathbf {Z}/p$, preprint (Bielefeld).
- M. Bökstedt and I. Madsen, Algebraic $K$-theory of local number fields: the unramified case, Prospects in topology (Princeton, NJ, 1994) Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 28–57. MR 1368652
- Lawrence Breen, Extensions du groupe additif, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 39–125 (French). MR 516914
- William Browder, Torsion in $H$-spaces, Ann. of Math. (2) 74 (1961), 24–51. MR 124891, DOI 10.2307/1970305
- M. Brun, Spectral sequences for topological Hochschild homology, Thesis, Aarhus University, 1997.
- M. Brun, Topological Hochschild homology of $Z/p^n$, J. Pure Appl. Algebra (to appear).
- R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR 836132, DOI 10.1007/BFb0075405
- Buenos Aires Cyclic Homology Group, Cyclic homology of algebras with one generator, $K$-Theory 5 (1991), no. 1, 51–69. Jorge A. Guccione, Juan José Guccione, María Julia Redondo, Andrea Solotar and Orlando E. Villamayor participated in this research. MR 1141335, DOI 10.1007/BF00538879
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- Bjørn Ian Dundas and Randy McCarthy, Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Algebra 109 (1996), no. 3, 231–294. MR 1388700, DOI 10.1016/0022-4049(95)00089-5
- Matthew Ando, Isogenies of formal group laws and power operations in the cohomology theories $E_n$, Duke Math. J. 79 (1995), no. 2, 423–485. MR 1344767, DOI 10.1215/S0012-7094-95-07911-3
- Vincent Franjou and Teimuraz Pirashvili, On the Mac Lane cohomology for the ring of integers, Topology 37 (1998), no. 1, 109–114. MR 1480880, DOI 10.1016/S0040-9383(97)00005-0
- Lars Hesselholt and Ib Madsen, On the $K$-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29–101. MR 1410465, DOI 10.1016/0040-9383(96)00003-1
- Mamuka Jibladze and Teimuraz Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991), no. 2, 253–296. MR 1094244, DOI 10.1016/0021-8693(91)90093-N
- Christian Kassel, La $K$-théorie stable, Bull. Soc. Math. France 110 (1982), no. 4, 381–416 (French, with English summary). MR 694757
- Ayelet Lindenstrauss, Topological Hochschild homology of extensions of $\mathbf Z/p\mathbf Z$ by polynomials, and of $\mathbf Z[x]/(x^n)$ and $\mathbf Z[x]/(x^n-1)$, $K$-Theory 10 (1996), no. 3, 239–265. MR 1394379, DOI 10.1007/BF00538184
- Ayelet Lindenstrauss, The topological Hochschild homology of the Gaussian integers, Amer. J. Math. 118 (1996), no. 5, 1011–1036. MR 1408497
- A. Lindenstrauss, A relative spectral sequence for topological Hochschild homology of spectra, J. Pure Appl. Algebra (to appear).
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Ib Madsen, Algebraic $K$-theory and traces, Current developments in mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 191–321. MR 1474979
- Ib Madsen, Higher torsion in $SG$ and $BSG$, Math. Z. 143 (1975), 55–80. MR 375307, DOI 10.1007/BF01173051
- J. Peter May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics, Vol. 577, Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave. MR 0494077
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- Teimuraz Pirashvili and Friedhelm Waldhausen, Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992), no. 1, 81–98. MR 1181095, DOI 10.1016/0022-4049(92)90012-5
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
Bibliographic Information
- Ayelet Lindenstrauss
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 330151
- Email: ayelet@math.indiana.edu
- Ib Madsen
- Affiliation: Department of Mathematics, Aarhus University, DK-8000 Aarhus, Denmark
- Email: imadsen@imf.au.dk
- Received by editor(s): December 18, 1997
- Published electronically: February 16, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2179-2204
- MSC (2000): Primary 19D55; Secondary 13D03, 19D50, 55Q52
- DOI: https://doi.org/10.1090/S0002-9947-00-02611-8
- MathSciNet review: 1707702