The geometry of fixed point varieties on affine flag manifolds
HTML articles powered by AMS MathViewer
- by Daniel S. Sage
- Trans. Amer. Math. Soc. 352 (2000), 2087-2119
- DOI: https://doi.org/10.1090/S0002-9947-99-02295-3
- Published electronically: May 3, 1999
- PDF | Request permission
Abstract:
Let $G$ be a semisimple, simply connected, algebraic group over an algebraically closed field $k$ with Lie algebra $\mathfrak {g}$. We study the spaces of parahoric subalgebras of a given type containing a fixed nil-elliptic element of $\mathfrak {g}\otimes k((\pi ))$, i.e. fixed point varieties on affine flag manifolds. We define a natural class of $k^*$-actions on affine flag manifolds, generalizing actions introduced by Lusztig and Smelt. We formulate a condition on a pair $(N,f)$ consisting of $N\in \mathfrak {g}\otimes k((\pi ))$ and a $k^*$-action $f$ of the specified type which guarantees that $f$ induces an action on the variety of parahoric subalgebras containing $N$.
For the special linear and symplectic groups, we characterize all regular semisimple and nil-elliptic conjugacy classes containing a representative whose fixed point variety admits such an action. We then use these actions to find simple formulas for the Euler characteristics of those varieties for which the $k^*$-fixed points are finite. We also obtain a combinatorial description of the Euler characteristics of the spaces of parabolic subalgebras containing a given element of certain nilpotent conjugacy classes of $\mathfrak {g}$.
References
- A. Białynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology 12 (1973), 99–103. MR 313261, DOI 10.1016/0040-9383(73)90024-4
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI 10.2307/1970915
- A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 667–674 (English, with Russian summary). MR 453766
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- N. Bourbaki, Algèbre, Chap. IX, Hermann, Paris, 1959.
- N. Bourbaki, Algebra. II. Chapters 4–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964
- D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI 10.1007/BF02787119
- G. Lusztig and J. M. Smelt, Fixed point varieties on the space of lattices, Bull. London Math. Soc. 23 (1991), no. 3, 213–218. MR 1123328, DOI 10.1112/blms/23.3.213
- John Riordan, Combinatorial identities, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979. Reprint of the 1968 original. MR 554488
- D. S. Sage, The geometry of fixed point varieties on affine flag manifolds, Ph.D. thesis, University of Chicago, 1995.
- Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, Paris, 1962 (French). MR 0150130
- J. -P. Serre, Cohomologie galoisienne, Lecture Notes in Math. 5, Springer-Verlag, Berlin, fourth ed., 1973.
- N. Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups, Astérisque 168 (1988), 10–11, 191–217. Orbites unipotentes et représentations, I. MR 1021497
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554
Bibliographic Information
- Daniel S. Sage
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- Address at time of publication: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- Email: sage@ias.edu
- Received by editor(s): November 1, 1997
- Published electronically: May 3, 1999
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2087-2119
- MSC (1991): Primary 14L30, 20G25
- DOI: https://doi.org/10.1090/S0002-9947-99-02295-3
- MathSciNet review: 1491876