RELATIVE COMPLETIONS OF LINEAR GROUPS
OVER \(\mathbb{Z}[t] \) AND \(\mathbb{Z}[t, t^{-1}] \)

KEVIN P. KNUDSON

Abstract. We compute the completion of the groups \(SL_n(\mathbb{Z}[t]) \) and \(SL_n(\mathbb{Z}[t, t^{-1}]) \) relative to the obvious homomorphisms to \(SL_n(\mathbb{Q}) \); this is a generalization of the classical Malcev completion. We also make partial computations of the rational second cohomology of these groups.

The Malcev (or \(\mathbb{Q} \)-) completion of a group \(\Gamma \) is a pronipotent group \(P \) defined over \(\mathbb{Q} \) together with a homomorphism \(\varphi : \Gamma \to P \) satisfying the following universal mapping property: If \(\psi : \Gamma \to U \) is a map of \(\Gamma \) into a pronipotent group, then there is a unique map \(\Phi : P \to U \) such that \(\psi = \Phi \varphi \). If \(H_1(\Gamma, \mathbb{Q}) = 0 \), then the group \(P \) is trivial and is therefore useless for studying \(\Gamma \). In particular, the Malcev completions of the groups \(SL_n(\mathbb{Z}[t]) \) and \(SL_n(\mathbb{Z}[t, t^{-1}]) \) are trivial when \(n \geq 3 \) (this follows from the work of Suslin [15]).

Here we consider Deligne's notion of relative completion. Suppose \(\rho : \Gamma \to S \) is a representation of \(\Gamma \) in a semisimple linear algebraic group over \(\mathbb{Q} \). Suppose that the image of \(\rho \) is Zariski dense in \(S \). The completion of \(\Gamma \) relative to \(\rho \) is a proalgebraic group \(G \) over \(\mathbb{Q} \), which is an extension of \(S \) by a pronipotent group \(U \), and homomorphism \(\tilde{\rho} : \Gamma \to G \) which lifts \(\rho \) and has Zariski dense image. When \(S \) is the trivial group, \(G \) is simply the classical Malcev completion. The relative completion satisfies an obvious universal mapping property. The basic theory of relative completion was developed by R. Hain [6] (and independently by E. Looijenga (unpublished)), and is reviewed in Section 2 below.

In this paper, we consider the completions of the groups \(SL_n(\mathbb{Z}[t]) \) and \(SL_n(\mathbb{Z}[t, t^{-1}]) \) relative to the homomorphisms to \(SL_n(\mathbb{Q}) \) given by setting \(t = 0 \) (respectively, \(t = 1 \)). There is an obvious candidate for the relative completion, namely the proalgebraic group \(SL_n(\mathbb{Q}[T]) \). The map
\[
SL_n(\mathbb{Z}[t]) \to SL_n(\mathbb{Q}[T])
\]
is the obvious inclusion and the map
\[
SL_n(\mathbb{Z}[t, t^{-1}]) \to SL_n(\mathbb{Q}[T])
\]
is induced by the map \(t \mapsto 1 + T \).

Theorem. For all \(n \geq 3 \), the group \(SL_n(\mathbb{Q}[T]) \) is the relative completion of both \(SL_n(\mathbb{Z}[t]) \) and \(SL_n(\mathbb{Z}[t, t^{-1}]) \).
Remark. We expect that the theorem holds for an arbitrary simple group G of sufficiently large rank (large enough to guarantee the vanishing of $H^2(G(\mathbb{Z}), A)$ for nontrivial $G(\mathbb{Q})$-modules A). We have chosen to work with SL_n just to be concrete.

The theorem does not hold for $n = 2$ (see Section 5 below). Our proof breaks down in this case essentially because the \mathbb{Z}-Lie algebra $sl_2(\mathbb{Z})$ is not perfect.

We use this result to study the cohomology of the groups $SL_n(\mathbb{Z}[t])$ and $SL_n(\mathbb{Z}[t, t^{-1}])$. This is motivated by an attempt to find unstable analogues of the Fundamental Theorem of Algebraic K-theory. Recall that if A is a regular ring, then there are natural isomorphisms $K_\ast(A[t]) \cong K_\ast(A)$ and $K_\ast(A[t, t^{-1}]) \cong K_\ast(A) \oplus K_{\ast-1}(A)$. An unstable analogue does exist for infinite fields: If k is an infinite field, then $H_\ast(SL_n(k[t]), \mathbb{Z}) \cong H_\ast(SL_n(k), \mathbb{Z})$ for all n \cite{10}. Since \mathbb{Z} is regular, one might guess that an analogous statement holds for n sufficiently large. We note, however, that if such a result holds, we must have $n \geq 3$ since $H_1(SL_2(\mathbb{Z}[t]), \mathbb{Z})$ has infinite rank \cite{4}, while $H_1(SL_2(\mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}/12$.

The basic idea is to use continuous cohomology. Following Hain \cite{5}, we define the continuous cohomology of a group π to be

$$H^\bullet_{cts}(\pi, \mathbb{Q}) = \lim_{\Gamma^\bullet \pi} H^\bullet(\pi, \Gamma^\bullet \pi, \mathbb{Q}),$$

where $\Gamma^\bullet \pi$ denotes the lower central series of π. There is a natural map

$$H^\bullet_{cts}(\pi, \mathbb{Q}) \rightarrow H^\bullet(\pi, \mathbb{Q})$$

which is injective in degree 2 provided $H_1(\pi, \mathbb{Q})$ is finite dimensional.

Consider the extension

$$1 \rightarrow K(R) \rightarrow SL_n(R) \rightarrow SL_n(\mathbb{Z}) \rightarrow 1$$

for $R = \mathbb{Z}[t], \mathbb{Z}[t, t^{-1}]$. This yields a spectral sequence for computing the rational cohomology of $SL_n(R)$. In light of the following result, it is reasonable to conjecture that $H^2(SL_n(\mathbb{R}), \mathbb{Q}) = 0$ for $n \geq 3$.

Theorem. If $n \geq 3$, then $H^0(SL_n(\mathbb{Z}), H^2_{cts}(K(R), \mathbb{Q})) = 0$.

Of course, one can see that $H^2(SL_n(\mathbb{R}), \mathbb{Q}) = 0$ for $n \geq 5$ by using van der Kallen’s stability theorem \cite{8} and the Fundamental Theorem of Algebraic K-theory. The above result provides evidence for the vanishing of $H^2(SL_n(\mathbb{R}), \mathbb{Q})$ for $n = 3, 4$. We note, however, that $H^2(SL_2(\mathbb{Z}[t]), \mathbb{Q})$ has infinite rank (this is a consequence of results of Grunewald, et al. \cite{4}).

The study of the relative completion of the fundamental group of a complex algebraic variety X is related to the study of variations of mixed Hodge structure over X \cite{6}. Moreover, relative completions were used with great success by R. Hain in his study of mapping class groups \mathcal{M}_g and Torelli groups \mathcal{T}_g \cite{6,7}. In particular, he was able to provide a presentation of the Malcev Lie algebra of \mathcal{T}_g which in turn gives a partial computation of $H^2(\mathcal{T}_g, \mathbb{Q})$. This also yields a description of the completion \mathcal{G}_g of \mathcal{M}_g with respect to its representation on the first homology of the surface. However, the map $\mathcal{M}_g \rightarrow \mathcal{G}_g$ remains a mystery. As far as we know, the results of this paper provide the first concrete descriptions of relative completions and the associated homomorphisms aside from the obvious trivial ones (e.g., $SL_n(\mathbb{Z}) \rightarrow SL_n(\mathbb{Q})$, $n \geq 3$).

This paper obviously owes a great deal to the work of Dick Hain and I thank him for suggesting this problem to me. I would also like to thank the referee for many useful comments.
1. Malcev completions

Recall that the Malcev completion of a group Γ is a prounipotent group \mathcal{M} over \mathbb{Q}, together with a map $\Gamma \to \mathcal{M}$ which satisfies the obvious universal mapping property. We recall the construction of \mathcal{M} as given by Bousfield [3].

First, suppose that G is a nilpotent group. The Malcev completion of G consists of a group \hat{G} and a homomorphism $j : G \to \hat{G}$. It is characterized by the following three properties [13, Appendix A, Cor. 3.8]:

1. \hat{G} is nilpotent and uniquely divisible.
2. The kernel of j is the torsion subgroup of G.
3. If $x \in \hat{G}$, then $x^n \in \text{im } j$ for some $n \neq 0$.

Quillen constructs \hat{G} as the set of grouplike elements of the completed group algebra $\hat{\mathbb{Q}}G$ (completed with respect to the augmentation ideal).

Now, if G is an arbitrary group, denote by G_r the nilpotent group $G/\Gamma^r G$, where $\Gamma^r G$ is the lower central series of G. Following Bousfield [3], we define the Malcev completion of G to be

$$\mathcal{M} = \lim_{\to} \hat{G}_r$$

where \hat{G}_r is the Malcev completion of G_r. One can easily check that the group \mathcal{M} satisfies the universal mapping property.

2. Relative completions

In this section we review the theory of relative completion. All results in this section are due to R. Hain [6].

Let Γ be a group and $\rho : \Gamma \to S$ a Zariski dense representation of Γ in a semisimple algebraic group S over \mathbb{Q}. The completion of Γ relative to ρ may be constructed as follows. Consider all commutative diagrams of the form

$$
\begin{array}{cccccc}
1 & \longrightarrow & U & \longrightarrow & E & \longrightarrow & S & \longrightarrow & 1 \\
& & \downarrow{\bar{\rho}} & & \downarrow{\rho} & & \\
& & \rho & & \\
\end{array}
$$

where E is a linear algebraic group over \mathbb{Q}, U is a unipotent subgroup of E, and the image of $\bar{\rho}$ is Zariski dense. The collection of all such diagrams forms an inverse system [6] Prop 2.1] and we define the completion of Γ relative to ρ to be

$$G = \lim_{\to} E.$$

The group G satisfies the following universal mapping property. Suppose that E is a proalgebraic group over \mathbb{Q} such that there is a map $E \to S$ with prounipotent kernel. If $\varphi : \Gamma \to E$ is a homomorphism whose composition with $E \to S$ is ρ, then there is a unique map $\tau : G \to E$ such that the following diagram commutes:

$$
\begin{array}{ccc}
G & \longrightarrow & E \\
\downarrow{\bar{\varphi}} & & \downarrow{\varphi} \\
\Gamma & \longrightarrow & S \\
\end{array}
$$
Denote by L the image of $\rho : \Gamma \to S$ and by T the kernel. Let $\Gamma \to \mathcal{G}$ be the completion of Γ relative to ρ and let U be the prounipotent radical of \mathcal{G}. Consider the commutative diagram

\[
\begin{array}{ccc}
1 & \to & T & \to & \Gamma & \to & L & \to & 1 \\
& | & & | & & | & & | & \\
1 & \to & U & \to & \mathcal{G} & \to & S & \to & 1.
\end{array}
\]

Denote by T the classical Malcev completion of T. The universal mapping property of T gives a map $\Phi : T \to U$ whose composition with $T \to \mathcal{T}$ is the map $T \to U$.

Denote the kernel of Φ by K. We have the following three results.

Proposition 2.1 ([6 Prop. 4.5]). Suppose that $H_1(T, \mathbb{Q})$ is finite dimensional. If the action of L on $H_1(T, \mathbb{Q})$ extends to a rational representation of S, then K is contained in the center of T.

Proposition 2.2 ([6 Prop. 4.6]). Suppose that the natural action of L on $H_1(T, \mathbb{Q})$ extends to a rational representation of S. If $H^1(L, A) = 0$ for all rational representations A of S, then Φ is surjective.

Proposition 2.3 ([6 Prop. 4.13]). Suppose $H_1(T, \mathbb{Q})$ is finite dimensional and that $H^1(L, A)$ vanishes for all rational representations A of S. Suppose further that $H^2(L, A) = 0$ for all nontrivial rational representations of S. Then there is a surjective map $H_2(L, \mathbb{Q}) \to K$.

Observe that $H^1(SL_n(\mathbb{Z}), A) = 0$ for $n \geq 3$ by Raghunathan’s theorem [14]. Moreover, the second condition that $H^2(SL_n(\mathbb{Z}), A) = 0$ for all nontrivial A holds for $n \geq 9$ [24].

3. The Malcev completion of $K(R)$

Consider the short exact sequences

\[1 \to K(R) \to SL_n(R) \to SL_n(\mathbb{Z}) \to 1\]

for $R = \mathbb{Z}[t], \mathbb{Z}[t, t^{-1}]$, and $n \geq 3$. In this section we compute the Malcev completion of $K(R)$.

Denote by $m_{\mathbb{Z}[t]}$ (resp. $m_{\mathbb{Z}[t, t^{-1}]}$) the ideal (t) (resp. $(t-1)$) of $\mathbb{Z}[t]$ (resp. $\mathbb{Z}[t, t^{-1}]$). For each $l \geq 1$, define a subgroup $K^l(R)$ by

\[K^l(R) = \{ X \in K(R) : X \equiv I \mod m_{\mathbb{Z}[t]}^l \}.
\]

One can easily check that $K^*(R)$ is a descending central series; that is,

\[[K^i, K^j] \subseteq K^{i+j}.
\]

It follows that for each i, $\Gamma^i K \subseteq K^i$.

For each $i \geq 1$, define homomorphisms ρ_i, σ_i as follows. If $X \in K^i(\mathbb{Z}[t])$, write

\[X = I + t^i X_i + \cdots + t^m X_m\]

where each X_j is a matrix with integer entries. Define

\[\rho_i : K^i(\mathbb{Z}[t]) \to gl_n(\mathbb{Z})\]

by $\rho_i(X) = X_i$. Similarly, if $Y \in K^i(\mathbb{Z}[t, t^{-1}])$ we may write

\[Y = I + (t - 1)^i Y_i \mod (t - 1)^{i+1}
\]

\[\text{The result in [24] only implies vanishing for } n \geq 9. \text{ However, this is easily strengthened to } n \geq 4; \text{ one need only compute a certain constant which depends on the weights of } SL_n(\mathbb{Q})\text{-modules.}
since \((t^{-1} - 1)^i \equiv (-1)^i(t - 1)^i \mod (t - 1)^{i+1}\). Now define
\[
\sigma_i : K^i(\mathbb{Z}[t, t^{-1}]) \to \mathfrak{sl}_n(\mathbb{Z})
\]
by \(\sigma_i(Y) = Y_i\). These maps are well defined since the condition \(\det Z = 1\) in \(K^i(R)\) forces trace \(Z_i = 0\). Moreover, it is easy to see that the maps \(\rho_i\), \(\sigma_i\) are surjective group homomorphisms with kernel \(K^{i+1}\). Thus for each \(i \geq 1\), we have
\[
K^i(R) / K^{i+1}(R) \cong \mathfrak{sl}_n(\mathbb{Z}).
\]
Consider the associated graded \(\mathbb{Z}\)-Lie algebra
\[
\text{Gr}^i K(R) = \bigoplus_{i \geq 1} K^i(R) / K^{i+1}(R).
\]
If \(n \geq 3\), the Lie algebra \(\mathfrak{sl}_n(\mathbb{Z})\) satisfies \(\mathfrak{sl}_n(\mathbb{Z}) = [\mathfrak{sl}_n(\mathbb{Z}), \mathfrak{sl}_n(\mathbb{Z})]\). It follows that the graded algebra \(\text{Gr}^i K(R)\) is generated by \(\text{Gr}^1 K(R)\). The following lemma is easily proved (compare with [13 Appendix A, Prop. 3.5]).

Lemma 3.1. Let \(G\) be a group with filtration \(G = G^1 \supseteq G^2 \supseteq \cdots\). Then the associated graded Lie algebra \(\text{Gr}^i G\) is generated by \(\text{Gr}^1 G\) if and only if \(G^r = G^{r+1}\Gamma^r\) for each \(r \geq 1\).

Corollary 3.2. Suppose \(\bigcap G^r = \{1\}\). If \(\text{Gr}^i G\) is generated by \(\text{Gr}^1 G\), then the completions of \(G\) with respect to the filtration \(G^r\) and the lower central series \(\Gamma^r G\) are isomorphic; that is,
\[
\lim G / G^r \cong \lim G / \Gamma^r G.
\]

Proof. Consider the short exact sequence
\[
1 \to G^r / \Gamma^r \to G / \Gamma^r \to G / G^r \to 1.
\]
Since \(\text{Gr}^i G\) is generated by \(\text{Gr}^1 G\), we have \(G^r = G^{r+1}\Gamma^r\) for each \(r\). It follows that the inverse system \(\{G^r / \Gamma^r\}\) is surjective. This, in turn, implies that the natural map
\[
\lim G / \Gamma^r \to \lim G / G^r
\]
is surjective. Injectivity follows since the assumption that \(\bigcap G^r = \{1\}\) implies that \(\lim G / \Gamma^r = \{1\}\).

We now compute the Malcev completions of the groups \(K(R) / K^i(R)\). We first provide the following result.

Lemma 3.3. The completion of \(\mathbb{Z}[t, t^{-1}]\) with respect to the ideal \((t - 1)\) is the power series ring \(\mathbb{Z}[[T]]\). The canonical map \(\mathbb{Z}[t, t^{-1}] \to \mathbb{Z}[[T]]\) sends \(t\) to \(1 + T\).

Proof. This follows easily once we note that in \(\mathbb{Z}[t, t^{-1}] / (t - 1)^m\), we have \(t^{-1} = 1 + (t - 1) + \cdots + (t - 1)^{m-1}\), so that any polynomial in \(\mathbb{Z}[t, t^{-1}] / (t - 1)^m\) may be written as a polynomial in nonnegative powers of \((t - 1)\).

Consider the short exact sequence
\[
1 \to K \to SL_n(\mathbb{Z}[[T]]) \xrightarrow{T=0} SL_n(\mathbb{Z}) \to 1.
\]

Corollary 3.4. The group \(K\) is the completion of \(K(R)\) with respect to the filtration \(K^1(R) \supset K^2(R) \supset \cdots\) and with respect to the lower central series of \(K(R)\).

Proof. The first assertion follows from Lemma 3.3 and the second from Corollary 3.2.
Observe that the group \overline{K} has a filtration given by powers of T (exactly as $K(\mathbb{Z}[t])$ does) and that the successive graded quotients are isomorphic to $\mathfrak{sl}_n(\mathbb{Z})$. Denote the filtration by K^\ast.

We have an analogous sequence over \mathbb{Q}:

$$1 \rightarrow U \rightarrow SL_n(\mathbb{Q}[[T]]) \xrightarrow{T=0} SL_n(\mathbb{Q}) \rightarrow 1,$$

and the corresponding T-adic filtration U^\ast in U. In this case, the successive graded quotients are isomorphic to $\mathfrak{sl}_n(\mathbb{Q})$. We can assemble our exact sequences into a commutative diagram

$$
\begin{array}{c}
1 \rightarrow K(R) \rightarrow SL_n(R) \rightarrow SL_n(\mathbb{Z}) \rightarrow 1 \\
\downarrow \quad \downarrow \quad \| \\
1 \rightarrow \overline{K} \rightarrow SL_n(\mathbb{Z}[T]) \xrightarrow{T=0} SL_n(\mathbb{Z}) \rightarrow 1 \\
\downarrow \quad \downarrow \\
1 \rightarrow U \rightarrow SL_n(\mathbb{Q}[[T]]) \xrightarrow{T=0} SL_n(\mathbb{Q}) \rightarrow 1.
\end{array}
$$

Proposition 3.5. The map $K(R)/K^\ast(R) \xrightarrow{j} U/U^\ast$ is the Malcev completion.

Proof. According to Quillen’s criterion (see Section 1) we must check three things. First, the group U/U^\ast is nilpotent and uniquely divisible. Nilpotency is obvious, so suppose

$$Y = I + TY_1 + \cdots + T^{r-1}Y_{r-1}$$

is an element of U/U^\ast. For each $n > 0$, we must find a unique $X \in U/U^\ast$ with $X^n = Y$. For an arbitrary $X \in U/U^\ast$, write $X = I + TX_1 + \cdots + T^{r-1}X_{r-1}$, and consider the equation

$$Y = X^n$$

$$= I + TNX_1 + T^2(nX_2 + \binom{n}{2}X_1^2) + \cdots + T^{r-1}(nX_{r-1} + p((X_{i+1}^{r-1}))$$

where $p(X_1, \ldots, X_{r-2})$ is a polynomial in the X_i, $i \leq r - 2$. Clearly, we can solve this equation inductively for the X_i and find a unique X.

Second, we must show that the kernel of j is the torsion subgroup of $K(R)/K^\ast(R)$. This is clear since $K(R)/K^\ast(R)$ is torsion-free (i.e., if some power of $X \in K$ lies in K^\ast, then $X \in K^\ast$ already) and the map is injective.

Finally, we must show that if $X \in U/U^\ast$, then $X^m \in \text{im } j$ for some $m \neq 0$. We prove this by induction on r, beginning at $r = 2$. Let $X = I + TX_1$ be an element of U/U^2. Then there is an $m > 0$ such that mX_1 consists of integer entries. Then $X^m = I + TMX_1$ lies in the image of j. Now suppose the result holds for $r - 1$ and consider the commutative diagram

$$
\begin{array}{c}
0 \rightarrow K^{r-1}/K^r \rightarrow K/K^r \rightarrow K/K^{r-1} \rightarrow 1 \\
\downarrow \quad \downarrow \quad \downarrow \\
0 \rightarrow U^{r-1}/U^r \rightarrow U/U^r \rightarrow U/U^{r-1} \rightarrow 1.
\end{array}
$$

Suppose $X \in U/U^\ast$. Denote its image in U/U^{r-1} by \overline{X}. By the inductive hypothesis, there is an integer $m \neq 0$ with $\overline{X}^m = \overline{Y}$ for some $Y \in K/K^{r-1}$. Choose a lift Y of \overline{Y} in K/K^r. Then Y maps to \overline{X}^m in U/U^{r-1}. But X^m also maps to \overline{X}^m so that $X^mY^{-1} = Z$ for some $Z \in U^{r-1}/U^r$. Now, there exists some
$W \in K^{r-1}/K^r(\cong \mathfrak{sl}_n(\mathbb{Z}))$ with $Z^p = W$ for some $p \neq 0$. Since $Y = Z^{-1}X^m$, we have

$$Y^p = (Z^{-1}X^m)^p = Z^{-p}X^{mp} \quad \text{(since } \mathcal{U}^{r-1}/\mathcal{U}^r \text{ is central)}$$

Thus, $X^{mp} = WY^p$ belongs to K/K^r and the induction is complete. \hfill \Box

Theorem 3.6. The inclusion $K(R) \to \mathcal{U}$ is the Malcev completion.

Proof. Since $\mathcal{U} = \lim \mathcal{U}/\mathcal{U}^r$ and $\mathcal{U}/\mathcal{U}^r$ is the Malcev completion of $K(R)/K^r(R)$, the theorem will follow immediately if we can show that $K^r(R) = \Gamma^r K(R)$ for each r. This follows from the next two lemmas.

Lemma 3.7 ([3], 13.6). Let F^s be a central series in a group G such that:

1. The natural map $G \to \lim G/F^s$ is an isomorphism.
2. F^s/F^{s+1} is torsion-free for $s \geq 1$.
3. The Lie product $G/F^2 \otimes F^s/F^{s+1} \to F^{s+1}/F^{s+2}$ is surjective for $s \geq 1$.
4. G/F^2 is finitely generated.

Then G/F^s is F for each $s \geq 1$.

Lemma 3.8 ([3], 13.4). Let G be a group and denote by \overline{G} the completion $\overline{G} = \lim G/\Gamma^r G$. Then the following statements are equivalent:

1. The map $\overline{G} \to \overline{G}$ is an isomorphism.
2. The map $G/\Gamma^r G \to \overline{G}/\Gamma^r \overline{G}$ is an isomorphism for each $r \geq 1$.

Completion of the proof of Theorem 3.6 Consider the group $\overline{K} = \ker(SL_n(\mathbb{Z}[T])) \cong SL_n(\mathbb{Z})$ with its T-adic filtration \overline{K}. Note that Lemma 3.7 shows that $\overline{K}^r = \Gamma^r \overline{K}$ for each r: the first two conditions are clear, as is the fourth; the third condition follows since the Lie algebra $\mathfrak{sl}_n(\mathbb{Z})$ is perfect (it is here that we must exclude the case $n = 2$). Since

$$\overline{K} = \lim K(R)/K^r(R) = \lim K(R)/\Gamma^r K(R)$$

(the last equality is Corollary 3.4), and since

$$\overline{K} = \lim \overline{K}/\overline{K}^r = \lim \overline{K}/\Gamma^r \overline{K} = \overline{K},$$

Lemma 3.8 implies that $K(R)/\Gamma^r K(R) \cong \overline{K}/\Gamma^r \overline{K}$ for all r. Consider the commutative diagram

$$\begin{array}{ccc}
K(R)/\Gamma^r K(R) & \cong & \overline{K}/\Gamma^r \overline{K} \\
\downarrow & & \downarrow \approx \\
K(R)/K^r(R) & \cong & \overline{K}/K^r.
\end{array}$$

It follows that $K^r(R) = \Gamma^r K(R)$ and hence \mathcal{U} is the Malcev completion of $K(R)$. \hfill \Box
Remark 3.9. Even if Lemma 3.8 were not available, we could still prove the result as follows. Denote by \mathcal{M} the Malcev completion of $K(R)/\Gamma^n K(R)$, and by $\mathcal{M} = \lim_{r \to \infty} \mathcal{M}$, the Malcev completion of $K(R)$. Then the map $K(R) \to \mathcal{M}$ factors through \mathcal{K}. Moreover, by the universal property of \mathcal{K}, we get a unique map $\mathcal{M} \to U$ which is easily seen to be an isomorphism since it has an inverse given by the universal property of the Malcev completion $\mathcal{K} \to U$.

Corollary 3.10. If $n \geq 3$, then $H_1(K(R), \mathbb{Z}) \cong H_1(\mathcal{K}, \mathbb{Z}) \cong \mathfrak{sl}_n(\mathbb{Z})$.

Proof. The first isomorphism follows from Lemma 3.8 and the second isomorphism from Lemma 3.7.

\[\square \]

4. The relative completion of $SL_n(R)$

We first prove the following result.

Lemma 4.1. The group U has trivial center.

Proof. Let X be a central element of U. For a pair of integers $1 \leq i, j \leq n$, denote by $E_{ij}(a)$ the matrix having i, j-entry equal to a and all other entries 0. By computing the product (in both orders) of X with elementary matrices of the form $I + E_{ij}(T) \in U$ for $i \neq j$, we see that X must be a diagonal matrix with all entries equal, say $1 + a_1 T + a_2 T^2 + \cdots$. However, since X must have determinant 1, we see that $a_i = 0$ for all $i \geq 1$.

Theorem 4.2. If $n \geq 3$, then the map $SL_n(\mathbb{Z}[t]) \xrightarrow{t \to T} SL_n(\mathbb{Q}[\lfloor T\rfloor])$ (resp. $SL_n(\mathbb{Z}[t, t^{-1}]) \xrightarrow{t \to 1 + T} SL_n(\mathbb{Q}[\lfloor T\rfloor])$) is the completion with respect to the map $SL_n(\mathbb{Z}[t]) \xrightarrow{t = 0} SL_n(\mathbb{Q})$ (resp. $SL_n(\mathbb{Z}[t, t^{-1}]) \xrightarrow{t = 1} SL_n(\mathbb{Q})$).

Proof. The relative completion is a proalgebraic group which is an extension

\[(4.1) \quad 1 \longrightarrow \mathcal{P} \longrightarrow \mathcal{G} \longrightarrow SL_n(\mathbb{Q}) \longrightarrow 1 \]

where \mathcal{P} is prounipotent. By the universal property of U, we have a unique map $\Phi : U \to \mathcal{P}$ induced by the map $K(R) \to \mathcal{P}$. Since $H^1(SL_n(\mathbb{Z}), A) = 0$ for all rational $SL_n(\mathbb{Q})$-modules A [13], we see that Φ is surjective (Proposition 2.2). On the other hand, since $H^1(K(R), \mathbb{Q}) \cong \mathfrak{sl}_n(\mathbb{Q})$ is finite dimensional and the action of $SL_n(\mathbb{Z})$ on $H^1(K(R), \mathbb{Q})$ extends to a rational representation of $SL_n(\mathbb{Q})$, Proposition 2.1 implies that the kernel of Φ is central in U. But by Lemma 4.1 the center of U is trivial. Thus, Φ is injective and $U \cong \mathcal{P}$. Since the extension (4.1) is split ([6] Prop. 4.4]), it follows that $\mathcal{G} \cong SL_n(\mathbb{Q}[\lfloor T\rfloor])$.

Remark 4.3. An alternate proof of the injectivity of Φ can be obtained via Proposition 2.3 for n sufficiently large. Since $H^2(SL_n(\mathbb{Z}), A)$ vanishes for nontrivial A when $n \geq 9$ [2], Proposition 2.3 asserts that the kernel of Φ is bounded above by $H_2(SL_n(\mathbb{Z}), \mathbb{Q}) = 0$. This can certainly be improved to $n \geq 4$ (but not to $n = 3$ since examples exist where $H^2(SL_3(\mathbb{Z}), A) \neq 0$).

5. The case $n = 2$

The proof of Theorem 4.2 breaks down in the case $n = 2$ for a variety of reasons.

1. The Lie algebra $\mathfrak{sl}_2(\mathbb{Z})$ is not perfect.
2. Raghunathan’s theorem on the vanishing of $H^1(SL_n(\mathbb{Z}), A)$ does not apply for $n = 2$.
3. Borel’s result for the vanishing of $H^2(SL_n(\mathbb{Z}), A)$ cannot be strengthened to include $n = 2$.

However, one can make the following observations. Denote by $G(\mathbb{Z})$ the completion of $SL_2(\mathbb{Z})$ relative to its canonical inclusion in $SL_2(\mathbb{Q})$, and by $G(R)$ the completion of $SL_2(R) (R = \mathbb{Z}[[t]], \mathbb{Z}[t, t^{-1}])$ relative to the map $SL_2(R) \rightarrow SL_2(\mathbb{Q})$. The group $G(\mathbb{Z})$ is not isomorphic to $SL_2(\mathbb{Q})$; in fact, it is an extension of $SL_2(\mathbb{Q})$ by a free pronipotent group with infinite dimensional H_1 (see [7, Rmk. 3.9]).

We have a commutative diagram

$$
\begin{array}{cccc}
1 & \rightarrow & K(R) & \rightarrow & SL_2(R) & \rightarrow & SL_2(\mathbb{Z}) & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & 1 \\
1 & \rightarrow & \mathcal{V} & \rightarrow & G(R) & \rightarrow & G(\mathbb{Z}) & \rightarrow & 1.
\end{array}
$$

The map $\Phi : G(R) \rightarrow G(\mathbb{Z})$ is induced by the composition $SL_2(R) \rightarrow SL_2(\mathbb{Z}) \rightarrow G(\mathbb{Z})$ and the map $\Psi : G(\mathbb{Z}) \rightarrow G(R)$ is induced by the composition $SL_2(\mathbb{Z}) \rightarrow SL_2(R) \rightarrow SL_2(R)$. Since the composition $SL_2(\mathbb{Z}) \rightarrow SL_2(R) \rightarrow SL_2(\mathbb{Z})$ is the identity, we see that $\Phi \circ \Psi = id_{G(\mathbb{Z})}$.

If $n \geq 3$, then the map $SL_n(\mathbb{Z}) \rightarrow SL_n(\mathbb{Q})$ is the relative completion so that the completion of $SL_n(R)$ is an extension of the completion of $SL_n(\mathbb{Z})$ by the Malcev completion of $K(R)$. This leads us to make the following conjecture.

Conjecture 5.1. The map $K(R) \rightarrow \mathcal{V}$ is the Malcev completion.

Note that there is at least some hope for this since \mathcal{V} is properly contained in the kernel of the map $G(R) \rightarrow SL_2(\mathbb{Q})$ so that \mathcal{V} is pronipotent.

6. Cohomology

In this section we provide evidence for the following conjecture.

Conjecture 6.1. If $n \geq 3$, then $H^2(SL_n(R), \mathbb{Q}) = 0$.

Note that this conjecture is true for $n \geq 5$ for the following reason. If $n \geq 5$, then by van der Kallen’s stability theorem [5], we have

$$H_2(SL_n(R), \mathbb{Z}) \cong H_2(SL(R), \mathbb{Z}) \cong K_2(R).$$

It follows that if $n \geq 5$, then $H_2(SL_n(R), \mathbb{Q}) \cong K_2(R) \otimes \mathbb{Q}$. Since $K_2(\mathbb{Z}[t]) \cong K_2(\mathbb{Z})$ and $K_2(\mathbb{Z}[t, t^{-1}]) \cong K_2(\mathbb{Z}) \oplus K_1(\mathbb{Z})$, we see that $K_2(R) \otimes \mathbb{Q} = 0$.

The tool that we will use is continuous cohomology. We define the continuous cohomology of a group π by

$$H^\bullet_{cts}(\pi, \mathbb{Q}) = \lim \ H^\bullet(\pi/\Gamma^r \pi, \mathbb{Q}).$$

The basic properties of continuous cohomology were established by Hain [5]. We note the following facts.

Proposition 6.2 ([5], Thm. 5.1). The natural map $H^k_{cts}(\pi, \mathbb{Q}) \rightarrow H^k(\pi, \mathbb{Q})$ is an isomorphism for $k = 0, 1$ and is injective for $k = 2$.

The map on H^2 need not be surjective in general. A group π is called pseudo-nilpotent if the natural map $H^\bullet_{cts}(\pi, \mathbb{Q}) \rightarrow H^\bullet(\pi, \mathbb{Q})$ is an isomorphism. Examples of pseudo-nilpotent groups include the pure braid groups, free groups and the fundamental groups of affine curves over \mathbb{C}.

Proposition 6.3 ([5 Thm. 3.7]). Let π be a group with $H_1(\pi, \mathbb{Q})$ finite dimensional. Let \mathcal{P} be the Malcev completion of π and denote by \mathfrak{p} the Lie algebra of \mathcal{P}. Then the natural map
\[H^*_\text{cts}(\pi, \mathbb{Q}) \rightarrow H^*_\text{cts}(\mathfrak{p}, \mathbb{Q}) \]
is an isomorphism.

Thus, if $H_1(\pi, \mathbb{Q})$ is finite dimensional, we can use Lie algebra cohomology to obtain a lower bound on the dimension of $H^2(\pi, \mathbb{Q})$. We will not compute $H^2_{\text{cts}}(K(R), \mathbb{Q})$ explicitly. However, we note the following result.

Proposition 6.4. If $n \geq 3$, then $\dim H^2_{\text{cts}}(K(R), \mathbb{Q}) \geq (n^2 - 1)^2/4$.

Proof. By a result of Lubotzky and Magid [11], if G is a nilpotent group with $b_1 = \dim H_1(G, \mathbb{Q})$ finite, then the second Betti number b_2 satisfies $b_2 \geq b_1^2/4$. In the case of $K(R)/K^r(R)$, since $H_1(K/K^r, \mathbb{Q}) \cong \mathfrak{sl}_n(\mathbb{Q})$, we see that $b_2(K/K^r) \geq (n^2 - 1)^2/4$ for each r.

To show that $H^2(\text{SL}_n(R), \mathbb{Q})$ vanishes, it would suffice to show the following three things.
1. $H^2(\text{SL}_n(\mathbb{Z}), \mathbb{Q}) = 0$.
2. $H^1(\text{SL}_n(\mathbb{Z}), H^1(K(R), \mathbb{Q})) = 0$.
3. $H^0(\text{SL}_n(\mathbb{Z}), H^2(K(R), \mathbb{Q})) = 0$.
The first statement is clear. The second follows from [13] since $H^1(K(R), \mathbb{Q})$ is the adjoint representation $\mathfrak{sl}_n(\mathbb{Q})$. The third statement is true for $n \geq 5$.

Proposition 6.5. If $n \geq 5$, then $H^0(\text{SL}_n(\mathbb{Z}), H^2(K(R), \mathbb{Q})) = 0$.

Proof. Consider the Hochschild–Serre spectral sequence
\[E_2^{p,q} = H^p(\text{SL}_n(\mathbb{Z}), H^q(K(R), \mathbb{Q})) \Rightarrow H^{p+q}(\text{SL}_n(R), \mathbb{Q}). \]
We know that $H^2(\text{SL}_n(R), \mathbb{Q}) = 0$ for $n \geq 5$ (see the remarks following Conjecture 5.1). Note also that $H^2(\text{SL}_n(\mathbb{Z}), H^1(K(R), \mathbb{Q})) = 0$ and $H^3(\text{SL}_n(\mathbb{Z}), \mathbb{Q}) = 0$. It follows that $d_2 : E_2^{0,2} \rightarrow E_2^{2,1}$ and $d_3 : E_3^{0,2} \rightarrow E_3^{3,0}$ are both the zero map and hence $E_{\infty}^{0,2} = H^0(\text{SL}_n(\mathbb{Z}), H^2(K(R), \mathbb{Q}))$. But this group must vanish since $E_{\infty}^{1,1}$ and $E_{\infty}^{2,0}$ do.

The next result provides evidence for the vanishing of $H^0(\text{SL}_n(\mathbb{Z}), H^2(K(R), \mathbb{Q}))$ when $n = 3, 4$. We first state the following lemma, which can be proved via direct computation.

Lemma 6.6. Let $\Gamma_{a_1, \ldots, a_{n-1}}$ be the irreducible $\text{SL}_n(\mathbb{Q})$-module with highest weight $(a_1 + \cdots + a_{n-1})L_1 + \cdots + a_{n-1}L_{n-1}$, where L_1, \ldots, L_{n-1} are the weights of the fundamental representation. Then we have the following isomorphisms of $\text{SL}_n(\mathbb{Q})$-modules:
1. $\mathfrak{sl}_3(\mathbb{Q}) \otimes \mathfrak{sl}_3(\mathbb{Q}) \cong \Gamma_{2,2} \oplus \Gamma_{3,0} \oplus \Gamma_{0,3} \oplus \Gamma_{1,1} \oplus \Gamma_{1,1} \oplus \Gamma_{0,0},$
2. $\Lambda^2 \mathfrak{sl}_4(\mathbb{Q}) \cong \Gamma_{3,0} \oplus \Gamma_{0,3} \oplus \Gamma_{1,1},$
3. $\Lambda^3 \mathfrak{sl}_4(\mathbb{Q}) \cong \Gamma_{2,2} \oplus \Gamma_{3,0} \oplus \Gamma_{0,3} \oplus \Gamma_{1,1} \oplus \Gamma_{0,0},$
4. $\mathfrak{sl}_4(\mathbb{Q}) \otimes \mathfrak{sl}_4(\mathbb{Q}) \cong \Gamma_{2,0,2} \oplus \Gamma_{2,1,0} \oplus \Gamma_{0,1,2} \oplus \Gamma_{0,0,2} \oplus \Gamma_{1,0,1} \oplus \Gamma_{0,0,0},$
5. $\Lambda^2 \mathfrak{sl}_4(\mathbb{Q}) \cong \Gamma_{2,1,0} \oplus \Gamma_{0,1,2} \oplus \Gamma_{1,0,1},$
6. $\Lambda^3 \mathfrak{sl}_4(\mathbb{Q}) \cong \Gamma_{4,0,0} \oplus \Gamma_{0,0,4} \oplus \Gamma_{1,2,1} \oplus \Gamma_{2,0,2} \oplus \Gamma_{2,1,0} \oplus \Gamma_{0,1,2} \oplus \Gamma_{0,2,0} \oplus \Gamma_{1,0,1} \oplus \Gamma_{0,0,0}.$
Theorem 6.7. If \(n \geq 3 \), then \(H^0(SL_n(\mathbb{Z}), H^2_{\text{cts}}(K(R), \mathbb{Q})) = 0 \).

Proof. We need only consider the cases \(n = 3, 4 \). It suffices to show that
\[
H^0(SL_n(\mathbb{Z}), H^2(K/K^l, \mathbb{Q})) = 0
\]
for each \(l \). We use Lie algebra cohomology. Denote by \(u \) the Lie algebra of \(U \) and consider the \(T \)-adic filtration \(u^l \). The Malcev Lie algebra of \(K/K^2 \) is the Lie algebra \(u_1 = u/u^2 \). Observe that for each \(l \), the quotient \(u^{l-1}/u^l \) is isomorphic as an \(SL_n(\mathbb{Q}) \)-module to the adjoint representation \(sl_n(\mathbb{Q}) \), but as a Lie algebra it is abelian \((i.e., \) to compute the bracket in \(u^{l-1}/u^l \), we lift elements to \(u^{l-1} \), apply \([, , \] \), and project back; but the commutator of any two elements in \(u^{l-1} \) lies in \(u^l \) and so projects to 0).

We proceed by induction on \(l \), beginning at \(l = 2 \). The Lie algebra \(u_2 \) is abelian of dimension \(n^2 - 1 \); as an \(SL_n(\mathbb{Q}) \)-module it is the adjoint representation \(sl_n(\mathbb{Q}) \). Thus \(H^2(u_2, \mathbb{Q}) \cong \bigwedge^2 sl_n(\mathbb{Q}) \) as an \(SL_n(\mathbb{Q}) \)-module. By Lemma 6.6 parts 2 and 5, we see that \(H^0(SL_n(\mathbb{Z}), H^2(u_2, \mathbb{Q})) = 0 \). Now, suppose that \(l > 2 \) and that \(H^0(SL_n(\mathbb{Z}), H^2(u_{l-1}, \mathbb{Q})) = 0 \). Consider the short exact sequence
\[
0 \longrightarrow u^{l-1}/u^l \longrightarrow u_l \longrightarrow u_{l-1} \longrightarrow 0.
\]
The kernel is central in \(u_l \). Consider the Hochschild–Serre spectral sequence
\[
E_2^{p,q} = H^p(u_{l-1}, H^q(u^{l-1}/u^l, \mathbb{Q})) \Longrightarrow H^{p+q}(u_l, \mathbb{Q}).
\]
We have isomorphisms of \(SL_n(\mathbb{Q}) \)-modules:
1. \(H^2(u_{l-1}, H^0(u^{l-1}/u^l, \mathbb{Q})) = H^2(u_{l-1}, \mathbb{Q}) \),
2. \(H^1(u_{l-1}, H^1(u^{l-1}/u^l, \mathbb{Q})) \cong sl_n(\mathbb{Q}) \otimes sl_n(\mathbb{Q}) \),
3. \(H^0(u_{l-1}, H^2(u^{l-1}/u^l, \mathbb{Q})) \cong \text{Hom}_\mathbb{Q}(\bigwedge^2 sl_n(\mathbb{Q}), \mathbb{Q}) \).

By induction, the \(SL_n(\mathbb{Z}) \) invariants of the first module are trivial and by Lemma 6.6 parts 2 and 5, so are the invariants of the last group. It follows that
\[
H^0(SL_n(\mathbb{Z}), E_{\infty}^{0,2}) = 0.
\]
Also, since
\[
H^1(SL_n(\mathbb{Z}), E_{\infty}^{0,1}) = H^1(SL_n(\mathbb{Z}), sl_n(\mathbb{Q})) = 0,
\]
the long exact cohomology sequence associated to the extension
\[
0 \longrightarrow E_{\infty}^{0,1} \overset{d_2}{\longrightarrow} H^2(u_{l-1}, \mathbb{Q}) \longrightarrow E_{\infty}^{2,0} \longrightarrow 0
\]
shows that \(H^0(SL_n(\mathbb{Z}), E_{\infty}^{2,0}) = 0 \). It remains to show that \(H^0(SL_n(\mathbb{Z}), E_{\infty}^{1,1}) \) vanishes.

Note that \(E_{\infty}^{1,1} \) contains a copy of the trivial representation (parts 1 and 4 of Lemma 6.6). However, the differential (known as transgression \([\] \))
\[
d_2 : E_{\infty}^{1,1} \longrightarrow H^3(u_{l-1}, \mathbb{Q})
\]
is easily seen to map the trivial representation onto a copy of the trivial representation in the image (this copy arises from the map in cohomology induced by the map \(u_{l-1} \rightarrow sl_n(\mathbb{Q}) \); use parts 3 and 6 of Lemma 6.6). It follows that \(E_{\infty}^{1,1} \) contains no copies of the trivial representation and hence \(H^0(SL_n(\mathbb{Z}), E_{\infty}^{1,1}) = 0 \). Thus
\[
H^0(SL_n(\mathbb{Z}), H^2(u_l, \mathbb{Q})) = 0
\]
and the induction is complete. \(\square \)
One might conjecture that $K(R)$ is pseudo-nilpotent (we do not know if this is the case). If so, it would follow that $H^0(SL_n(\mathbb{Z}), H^2(K(R), \mathbb{Q})) = 0$ and hence $H^2(SL_n(R), \mathbb{Q}) = 0$ for $n \geq 3$.

References

