CONDITIONS FOR THE EXISTENCE OF SBR MEASURES FOR “ALMOST ANOSOV” DIFFEOMORPHISMS

HUYI HU

Abstract. A diffeomorphism f of a compact manifold M is called “almost Anosov” if it is uniformly hyperbolic away from a finite set of points. We show that under some nondegeneracy condition, every almost Anosov diffeomorphism admits an invariant measure μ that has absolutely continuous conditional measures on unstable manifolds. The measure μ is either finite or infinite, and is called SBR measure or infinite SBR measure respectively. Therefore, $\frac{1}{n}\sum_{i=0}^{n-1}\delta_{f^{i}x}$ tends to either an SBR measure or δ_{p} for almost every x with respect to Lebesgue measure. (δ_{x} is the Dirac measure at x.) For each case, we give sufficient conditions by using coefficients of the third order terms in the Taylor expansion of f at p.

0. Introduction

In this paper we study the existence of SBR measures of two-dimensional diffeomorphisms that are hyperbolic everywhere except at finite points. It is easy to see that our methods extend to the situation in which hyperbolicity fails at only finitely many periodic points.

If $f : M \to M$ is a C^{2} Anosov diffeomorphism of a compact connected Riemannian manifold, then a result of Sinai (see e.g. [S]) says that f admits an invariant Borel probability measure with the property that μ has absolutely continuous conditional measures on unstable manifolds. With respect to this measure, Lebesgue almost every point is generic. That is, if $\phi : M \to \mathbb{R}$ is a continuous function, then for Lebesgue almost every $x \in M$,

\begin{equation}
\lim_{n \to \infty} \frac{1}{n}\sum_{i=0}^{n-1}\phi(f^{i}x) \to \int \phi \, d\mu.
\end{equation}

This result, as well as some other properties of μ, has been extended to Axiom A attractors by Bowen, Ruelle, etc. (See e.g. [B].) In this article we will refer to an invariant measure having absolutely continuous conditional measures on unstable manifolds as a *Sinai-Bowen-Ruelle measure* or an *SBR measure*. Due to the works of Oseledec, Pesin, Ledrappier, Young and others on nonuniformly hyperbolic set, the notion of SBR measure is extended to a more general setting (see [O], [P1] and...
some properties of SBR measure are obtained (e.g. [L] and [LY]). Furthermore, a few examples of SBR measure outside Axiom A systems are studied (see e.g. [BY], [P2] and [C]).

This paper is motivated by the following question: Does a system $f: M \to M$ admit an SBR measure if hyperbolicity fails at only one fixed point p? We confine our topic to two-dimensional cases. Suppose in this system one of the eigenvalues of the derivative Df_p is larger than 1 and the other is equal to 1. The map is in fact uniformly expanding along unstable directions. It is easy to see that the system admits an SBR measure μ, because the arguments on bounded distortion estimates are standard and the push-forward method for invariant measure works. Consequently, the set of generic points with respect to μ has full Lebesgue measure.

If the larger eigenvalue is equal to 1 and the smaller one is less than 1, then the results in [HY] indicate that it does not admit SBR measures, and the limit in the left-hand side in (0.1) is $\phi(p)$ at Lebesgue almost every point. It is also found that this system admits an infinite measure that has absolutely continuous conditional measures on weak unstable manifolds. Here we will refer to this measure as an infinite SBR measure (see §1 for precise meaning). In this paper, we investigate the case that the derivative Df_p is identity. Our results show that, under some nondegeneracy conditions, f admits either an SBR measure or an infinite SBR measure (Theorem A), and both cases do occur (Theorem B).

The phenomena in this case are quite different from that mentioned above, and some interesting things happen. For example, the decomposition of the tangent spaces into $T_xM = E^u_x \oplus E^s_x$ is discontinuous at the fixed point p (see Remark 4.3). Consequently, we cannot expect the Hölder condition for E^u_x and the Lipschitz condition for W^s-foliation, which are used for bounded distortion and Lebesgue genericity in [HY]. However, we find out that E^u_x satisfies Hölder condition away from p and the W^s-foliation remains absolutely continuous despite the discontinuity of E^u_x and E^s_x. On the other hand, the failure of Lipschitzness of the W^s-foliation makes both SBR measure and infinite SBR measure possible. Notice that whether the measure is finite or infinite depends on whether the area of the sets $P_i = \{ x \in P : f^i x \in P, i = 0,1,\cdots,n \}$ can be summed up or not for any rectangle P containing p in its interior. For a normal Anosov system or a system considered in [HY], because of the Lipschitzness of W^s-foliation this solely depends on how fast a point x in $W^s(p) \setminus \{p\}$ approaches p under backwards iteration. But in our case it depends on how much a stable manifold $W^s(x)$ bends to $W^s(p)$ for x near p.

The proofs of the theorems involve detailed analysis of the dynamics near the “hyperbolic type” indifferent fixed point, which hasn’t been done before. We find out a similarity, i.e., the behavior of f^{n^2} at $\frac{x}{n}$ is about the same as f at x but in a smaller scale. We prove the existence and differentiability of stable and unstable manifolds for the fixed point p. We use eigenspaces as coordinate systems to study properties of the splittings $E^u_x \oplus E^s_x$, and use the “local Hölder condition” away from p to avoid the problem caused by discontinuity of the splittings at p; the latter is crucial for the estimates of bounded distortion.

SBR measures on the Hénon attractors, whose existence is found by Benedicks and L.-S. Young ([BY]), are notable examples for non-uniformly hyperbolic systems. The Hénon attractors involve nontrivial interchanges between stable and unstable directions. There exist some areas in which the maps contract very severely along the directions corresponding to positive Lyapunov exponents. However, the orbits jump out immediately and then stay outside the areas for a while so that expansion...
can be recovered. In our case, the stable and unstable directions are bounded away from each other and the map is always expanding in unstable directions. But near the fixed point \(p \) the expansion is very weak and the orbits spend a very long time there. This causes non-uniform hyperbolicity. The speed of expansion may or may not be able to keep exponentially fast eventually, depending on the local behaviors of the maps (see Remark 1.5 and Theorem B).

Acknowledgment. Part of this work was done while I was in the Department of Mathematics at the University of Arizona. It is my pleasure to thank my advisor, Professor Lai-Sang Young, for introducing me to this topic and for giving valuable advice. I also wish to thank Professor Marek Rychlik for his helpful conversation.

1. Definitions and statement of results

Let \(M \) be a \(C^\infty \) two-dimensional compact Riemannian manifold without boundary and let \(m \) denote the Riemannian measure on \(M \). Let \(f \in \text{Diff}^4(M) \) be the set of \(C^4 \) diffeomorphisms.

Definition 1. \(f \in \text{Diff}^4(M) \) is said to be an almost Anosov diffeomorphism, if there exist two continuous families of cones \(x \rightarrow C^u_x, C^s_x \) such that, except for a finite set \(S \),

i) \(Df_xC^u_x \subset C^u_x \) and \(Df_xC^s_x \supset C^s_x \),

ii) \(|Df_xv| > |v| \ \forall v \in C^u_x \) and \(|Df_xv| < |v| \ \forall v \in C^s_x \).

Remark 1.1. We may assume \(S \) is an invariant set. Moreover, by considering \(f^n \) instead of \(f \) we may also assume \(f^p = p \ \forall p \in S \).

Remark 1.2. By the continuity, it is easy to see that, if \(p \in S \), then

i) \(Df_pC^u_p \subset C^u_p \) and \(Df_pC^s_p \supset C^s_p \),

ii) \(|Df_pv| \geq |v| \ \forall v \in C^u_p \) and \(|Df_pv| \leq |v| \ \forall v \in C^s_p \).

For \(\Gamma \subset M \) and \(r > 0 \), we denote \(B(\Gamma, r) = \{ y \in M : d(y, \Gamma) \leq r \} \).

The ratio of \(|Df_xv| \) to \(|v| \) may tend to 1 if \(x \rightarrow S \) and \(v \in C^u_x \) or \(C^s_x \). We need some condition to control the speed of the ratio.

Definition 2. An almost Anosov diffeomorphism \(f \) is said to be nondegenerate (up to the third order), if there exist constants \(r_0 > 0 \) and \(\kappa^u, \kappa^s > 0 \) such that for all \(x \in B(S, r_0) \),

\[
\begin{align*}
|Df_xv| &\geq (1 + \kappa^u d(x, S)^2)|v| & \forall v \in C^u_x, \\
|Df_xv| &\leq (1 - \kappa^s d(x, S)^2)|v| & \forall v \in C^s_x.
\end{align*}
\]

Remark 1.3. If \(f \) is an almost Anosov diffeomorphism, then for any constant \(r > 0 \), there exist constants \(0 < K^s < 1 < K^u \), depending on \(r \), such that for all \(x \notin B(S, r) \),

\[
\begin{align*}
|Df_xv| &\geq K^u|v| & \forall v \in C^u_x, \\
|Df_xv| &\leq K^s|v| & \forall v \in C^s_x.
\end{align*}
\]

The following paragraphs concerning the definition of SBR measures can be seen in [LS]. We state the following for the convenience of the reader.

Let \(\xi \) be a measurable partition of a measure space \(X \), and let \(\nu \) be a probability measure on \(X \). Then there is a family of probability measures \(\{ \nu^x : x \in X \} \) with
\[\nu^\xi_x(B) = 1, \text{ such that for every measurable set } B \subset X, x \rightarrow \nu^\xi_x(B) \text{ is measurable} \]

and

\[\nu B = \int_X \nu^\xi_x(B) d\nu(x). \]

The family \(\{\nu^\xi_x\} \) is called a canonical system of conditional measures for \(\nu \) and \(\xi \).

(For reference, see e.g. [R].)

Suppose now that \(f : (M, \mu) \rightarrow (M, \mu) \) has positive Lyapunov exponents almost everywhere. Then for \(\mu \)-a.e. \(x \), the unstable manifold \(W^u(x) \) exists and is an immersed submanifold of \(M \) (see [P1]). A measurable partition \(\xi \) of \(M \) is said to be subordinate to unstable manifolds if for \(\mu \)-a.e. \(x \), \(\xi(x) \subset W^u(x) \) and contains an open neighborhood of \(x \) in \(W^u(x) \). Let \(m^u_x \) denote the Riemannian measure induced on \(W^u(x) \). We say that \(\mu \) has absolutely continuous conditional measures on unstable manifolds if for every measurable partition \(\xi \) that is subordinate to unstable manifolds, \(\mu^\xi_x \) is absolutely continuous with respect to \(m^u_x \) (written \(\mu^\xi_x \ll m^u_x \)) for \(\mu \)-a.e. \(x \in M \). (For more details, see [LS].)

Definition 3. An \(f \)-invariant Borel probability measure \(\mu \) on \(M \) is called an SBR measure for \(f : M \rightarrow M \) if

i) \((f, \mu) \) has positive Lyapunov exponents almost everywhere;

ii) \(\mu \) has absolutely continuous conditional measures on unstable manifolds.

Let \(\Gamma \) be a subset of \(M \). We denote by \(f_\Gamma \) the first return map on \(\Gamma \), i.e.,

\[f_\Gamma x = f^{\tau(x)}(x) \forall x \in \Gamma, \text{ where } \tau(x) \text{ is the smallest positive integer such that } f^{\tau(x)}(x) \in \Gamma. \]

We also denote by \(\mu_\Gamma \) the normalization of \(\mu|_\Gamma \) as \(\mu_\Gamma < \infty \).

Note that the notion of absolutely continuous conditional measures on unstable manifolds makes sense if even \(f \) is a piecewise diffeomorphism.

Definition 4. An \(f \)-invariant Borel measure \(\mu \) on \(M \) is called an infinite SBR measure, if \(\mu M = \infty \) and for any open set \(U \supset S \),

i) \(\mu(M \setminus U) < \infty \),

ii) \((f_{M \setminus U}, \mu_{M \setminus U}) \) has positive Lyapunov exponents almost everywhere, and \(\mu_{M \setminus U} \) has absolutely continuous conditional measures on unstable manifolds of \(f \).

Remark 1.4. In this paper, the term “SBR measure” without any qualifications will always be reserved for probability measures.

Remember our assumption that \(M \) is a \(C^\infty \) two-dimensional compact Riemannian manifold, \(m \) is the Riemannian measure on \(M \) and \(f \in \text{Diff}_c^4(M) \).

Theorem A. Every topologically transitive nondegenerate almost Anosov diffeomorphism \(f \) on \(M \) has either an SBR measure or an infinite SBR measure.

The nondegeneracy condition in the theorem is only for technical reasons. The author believes that the result would remain true under some weaker conditions.

Corollary. Let \(f \) be as in Theorem A.

i) If \(f \) admits an SBR measure \(\mu \), then for any continuous function \(\phi : M \rightarrow \mathbb{R} \),

\[\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \phi(f^i x) = \int \phi d\mu, \quad \text{m-a.e. } x \in M. \]
ii) If \(f \) admits an infinite SBR measure \(\mu \), then for any open neighborhood \(U \) of \(S \),
\[
\lim_{n \to \infty} \frac{1}{n} \# \{ k : f^k x \in U, \, 0 \leq k \leq n - 1 \} = 1, \quad m\text{-a.e. } x \in M.
\]

Remark 1.5. In case i) Lebesgue almost every point has a positive Lyapunov exponent because of the definition of the SBR measure. On the contrary, it is evident by the corollary that in case ii) there is no positive Lyapunov exponent at Lebesgue almost every point in \(M \).

In this paper we only consider the case that \(S \) contains a single point, i.e., \(S = \{ p \} \). It is not difficult for the reader to adjust the proof to the case that \(S \) contains more than one point.

If \(S = \{ p \} \), then part ii) of the above corollary is equivalent to the following.

ii') If \(f \) admits an infinite SBR measure, then for any continuous function \(\phi : M \to \mathbb{R} \),
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \phi(f^i x) = \phi(p), \quad m\text{-a.e. } x \in M.
\]

By Remark 1.3, we see that \(Df_p \) has two eigenvectors. As we mentioned in \(x_0 \), it is known that Theorem A holds if at least one of eigenvalues of \(Df_p \) is not equal to 1. So to prove Theorem A, we only need consider the case that \(Df_p = \text{id} \).

For further analysis we need the following technical assumptions. Denote
\[
W^u_r(p) = \{ y \in M : d(f^{-n} y, p) \leq \epsilon \ \forall n \geq 0 \},
W^s_r(p) = \{ y \in M : d(f^n y, p) \leq \epsilon \ \forall n \geq 0 \}.
\]

We will prove in \(\S 4 \) that both are differentiable curves. To state and prove Theorem B we give the following.

Assumption A. \(W^u_r(p) \) and \(W^s_r(p) \) are \(C^4 \) curves.

Note that \(Df_p = \text{id} \). We will show \(D^2 f_p = 0 \) (Proposition 2.1). Thus we can take a suitable coordinate system such that in some neighborhood of \(p \), \(f \) can be expressed as
\[
f(x, y) = \left(x(1 + \phi(x, y)), \ y(1 - \psi(x, y)) \right),
\]
where \((x, y) \in \mathbb{R}^2\) and
\[
\phi(x, y) = a_0 x^2 + a_1 x y + a_2 y^2 + O((|x, y|)^3),
\]
\[
\psi(x, y) = b_0 x^2 + b_1 x y + b_2 y^2 + O((|x, y|)^3).
\]

In this circumstance we have the following.

Theorem B. Let \(f \) be a topologically transitive nondegenerate almost Anosov diffeomorphism on \(M \) with \(S = \{ p \} \). Assume \(Df_p = \text{id} \), and \(W^u_r(p) \) and \(W^s_r(p) \) are \(C^4 \) curves. With the notation above,

(I) if \(a_2 > 2b_2 \) for some \(0 < \alpha < 1 \), \(a_1 = 0 = b_1 \) and \(a_0 b_2 - a_2 b_0 > 0 \), then \(f \) admits an SBR measure;

(II) if \(2a_2 < \alpha b_2 \) for some \(0 < \alpha < 1 \) and \(a_1 b_2 \neq 0 \), then \(f \) admits an infinite SBR measure.
The systems satisfying the conditions in Theorem B exist. For example, we can
take a torus T^2 and constants $0 < r_0 << r_1 << 1 = \text{diam} \ T^2$ and then construct a
dynamical system in such a way that f is a hyperbolic toral automorphism outside
the r_1—neighborhood and has the form (1.3) and (1.4) within the r_0—neighborhood
of the origin O.

Remark 1.6. The nondegeneracy conditions (1.1) guarantee that $a_0, a_2, b_0, b_2 > 0$.
Hence, the conditions in Theorem B(I) imply that $\phi > \psi$ in some small neighbor-
hood of p, while the conditions in Theorem B(II) imply that in some quadrants,
$\phi < \psi$ near the y-axis.

Recall the cases discussed in §0 that $Df_p \neq \text{id}$ but one of the eigenvalues is
equal to 1. It seems that in such systems the existence of SBR measures depends
on whether expansion is “stronger” than contraction. The results in Theorem B is
consistent with this observation, because we can think that expansion is “stronger”
if $\phi > \psi$ and is “weaker” if $\phi < \psi$.

PART 1: PROOF OF THEOREM A

In this part we always assume that $B(p, r_0)$ is in the Euclidean plane \mathbb{R}^2, where
r_0 is as in Definition 2. Take a coordinate system in the plane such that the origin
is the fixed point p. Thus, we can write $|x| = d(x, p)$. Also, $\forall x \in B(p, r_0)$, we
identify $T_x M$ with the same Euclidean plane. Let $\Theta(x, y)$ denote the angle from x
to y counterclockwise in \mathbb{R}^2.

Assumption A is not going to be used in this part.

2. DYNAMICS NEAR THE FIXED POINT

We first prove in Proposition 2.1 that the second derivative $D^2 f_p$ is 0 and the
third derivative $D^3 f_p$ is not 0. Then we show that the action of f^n at x is similar
to the action of f at x, on a smaller scale. This can be seen in Propositions 2.6 and
2.8, where the former deals with norms and the latter deals with angles.

Proposition 2.1. $D^2 f_p = 0$ and $D^3 f_p(a, a, \cdot) \neq 0 \ \forall a \in \mathbb{R}^2$. So,

$$Df_x = \text{id} + \frac{1}{2} D^3 f_p(x, x, \cdot) + R_F(x),$$

and

$$f x = x + \frac{1}{6} D^3 f_p(x, x, x) + R_f(x),$$

where $R_F(x)$ and $R_f(x)$ are remainders with $\|R_F(x)\| = O(|x|^3)$ and $|R_f(x)| =
O(|x|^4)$.

Proof. Since $Df_p = \text{id}$, by Taylor expansion

$$(2.1) \quad Df_x = \text{id} + D^2 f_p(x, \cdot) + \frac{1}{2} D^3 f_p(x, x, \cdot) + R_F(x).$$

Let $\langle \cdot, \cdot \rangle$ denote the inner product. We have

$$|Df_x v|^2 = |v|^2 + 2 \langle D^2 f_p(x, v), v \rangle + O(|x|^2 |v|^2).$$

By (1.1) we know that for any sufficiently small x and $v \in C^*_x$, $\langle D^2 f_p(x, v), v \rangle \leq 0$.

Note that $x \rightarrow C^*_x$ is continuous. There exists a small $0 < r < r_0$ such that
$\bigcap_{x \in B(p, r)} C^*_x$ has nonempty interior. Thus, we get $\langle D^2 f_p(x, v), v \rangle \leq 0$ for
all \(x \in B(p, r) \) and \(v \in \bigcap_{x \in B(p, r)} C^*_x \). Since \(\langle D^2 f_p(x, \cdot), \cdot \rangle \) is trilinear, this implies
\[
\langle D^2 f_p(x, v), v \rangle = 0 \quad \forall x, v \in \mathbb{R}^2.
\]
Now it is easy to conclude that \(D^2 f_p = 0 \).

The inequality \(D^3 f_p(a, a, \cdot) \neq 0 \) follows from (1.1), (2.1) and the fact \(D^2 f_p = 0 \).

\[\square \]

Remark 2.2. Similarly, \(D^3 f_p^{-1} = 0 \) and \(D^3 f_p^{-1}(x, x, \cdot) \neq 0 \quad \forall x \in \mathbb{R}^2. \)

The next two corollaries follow directly from the above facts.

Corollary 2.3. There exists a constant \(\eta > 0 \) such that \(\forall x \in B(p, r_0), \)
\[
\|D f_p^\pm - \text{id}\| \leq 3\eta |x|^2 \quad \text{and} \quad |f^\pm x - x| \leq \eta |x|^3.
\]

Corollary 2.4. For all \(x, y \in B(p, r_0) \) with \(d(x, y) \leq |x|^2 \),
\[
d(f^\pm x, f^\pm y) \leq (1 + 4\eta f^\pm x^2) d(x, y).
\]

Lemma 2.5. Let \(x \in B(p, r_0) \). If \(|x| \geq (3\eta k)^{-\frac{1}{2}} \) for some \(k > 1 \), then \(|f x| \geq (3\eta (k + 1))^{-\frac{3}{2}} \).

Proof. By Corollary 2.3,
\[
|f x| \geq |x|(1 - \eta |x|^2) \geq \sqrt{\frac{1}{3k\eta}} \left(1 - \eta \cdot \frac{1}{3k\eta}\right) \geq \sqrt{\frac{1}{3(k + 1)\eta}}.
\]

Proposition 2.6. For any \(\epsilon > 0 \), there exists \(0 < r_{\rho} = r_{\rho}(\epsilon) \leq r_0 \) such that \(\forall x \in B(p, r_\rho), t \in (0, 1], j = 1, \ldots, \left[\frac{2}{t^2}\right], \)
\[
(1 - \epsilon)|t x| \leq |f^j(t x)| \leq (1 + \epsilon)|t x|.
\]

Proof. Take \(0 < r_{\rho} \leq r_0 \) such that \(e^{2\eta(1+\epsilon)^2r_{\rho}^2} \leq (1+\epsilon) \). Let \(x \in B(p, r_{\rho}) \) arbitrarily.

Suppose \(\forall t = 1, \ldots, j - 1, |f^j(t x)| \leq (1 + \epsilon)|t x| \). By Corollary 2.3,
\[
|f^j(t x)| \leq |f^{j-1}(t x)| \left(1 + \eta |f^{j-1}(t x)|^2\right) \leq t|x|(1 + \eta(1 + \epsilon)^2t^2|x|^2)^j
\]
\[
\leq t|x|(1 + \eta(1 + \epsilon)^2t^2|x|^2)^j \leq t|x|e^{2\eta(1+\epsilon)^2|x|^2} \leq (1 + \epsilon)t|x|.
\]

Therefore, the second inequality in the lemma follows from induction. The first inequality can be obtained similarly.

For any \(0 \neq x \in B(p, r_0) \), we denote \(e_x = x/|x| \) or, equivalently, \(x = |x|e_x \).

Lemma 2.7. For any \(e_x \) in the unit circle, uniformly
\[
\lim_{|t| \to 0} \frac{\Theta(te_x, f(te_x))}{|t|^2} = \frac{1}{6} D^3 f_p(e_x, e_x, e_x) |\sin \Theta(e_x, D^3 f_p(e_x, e_x, e_x))|.
\]

Proof. Denote \(A(x) = \frac{1}{6} D^3 f_p(x, x, x) \). The result follows from the facts \(|R_f(x)| = o(|x|^3) \) as \(x \to 0 \), \(A(x) = |x|^3 A(e_x) \) and
\[
\tan \Theta(x, f x) = \frac{|A(x)| \sin \Theta(x, A(x)) + |R_f(x)| \sin \Theta(x, R_f(x))}{|x| + |A(x)| \cos \Theta(x, A(x)) + |R_f(x)| \cos \Theta(x, R_f(x))}.
\]

\[\square \]
Proposition 2.8. For any \(\epsilon > 0\) there exists a constant \(0 < r_\theta = r_\theta(\epsilon) \leq r_p\) such that \(\forall r \in (0, r_\theta)\), if \(x, y \in B(p, r)\) with \(|\Theta(x, y)| \leq |\Theta(x, f x)|\) and \(|y| = t|x|\), \(t \in (0, 1]\), then

\[
(2.2) \quad |\Theta(y, f^j y)| \leq |\Theta(x, f x)| + \epsilon|x|^2 \quad \forall \ 0 \leq j \leq \frac{1}{t^2},
\]

\[
(2.3) \quad |\Theta(y, f^j y)| \geq |\Theta(x, f x)| - \epsilon|x|^2 \quad \forall \ \frac{1}{t^2} < j \leq \frac{2}{t^2}.
\]

Moreover, if \(D^3 f_\theta(e_x, e_x, e_x)\) and \(e_x\) are not collinear, then we can choose \(\tilde{r}_\theta = \tilde{r}_\theta(e_x, e_x)\) in such a way that \(\forall x \in B(p, \tilde{r}_\theta)\),

\[
(2.4) \quad |\Theta(y, f^j y)| \geq |\Theta(x, f x)| \quad \forall \ \frac{1}{(1 - \epsilon)t^2} \leq j \leq \frac{2}{t^2}.
\]

Proof. Denote \(A(z) = \frac{1}{3}D^3 f_\theta(z, z, z)\).

Note that \(A(e_x)\sin \Theta(e_x, A(e_x))\) is continuous on the unit circle. By Lemma 2.7, there exist \(r_\theta' > 0\) and \(\theta_0 > 0\) such that \(\forall x, z \in B(p, r_\theta')\) with \(\Theta(x, z) \leq \theta_0\),

\[
(2.5) \quad \frac{|z|^2}{|x|^2}|\Theta(x, f x)| - \frac{\epsilon}{4}|z|^2 \leq |\Theta(z, f z)| \leq \frac{|z|^2}{|x|^2}|\Theta(x, f x)| + \frac{\epsilon}{4}|z|^2.
\]

Also, there exists \(\beta \in (0, \frac{1}{2}]\) such that \(\forall x \in B(p, r_\theta')\),

\[
(2.6) \quad |\Theta(x, f x)| \leq \frac{\epsilon}{3\beta}|x|^2.
\]

By Proposition 2.6, there exists \(r_\theta'' > 0\) such that \(\forall x \in B(p, r_\theta''),\ t \in (0, 1]\),

\[
(2.7) \quad (1 - \beta)|t z|^2 \leq |f^j(t z)|^2 \leq (1 + \beta)|t z|^2 \quad j = 0, 1, \ldots, \left\lfloor \frac{2}{t^2} \right\rfloor.
\]

Take

\[
(2.8) \quad r_\theta = \min\{r_\theta', \ r_\theta'', \ \frac{\beta}{2\epsilon}\theta_0\}.
\]

Now let \(x, y \in B(p, r_\theta)\) with \(|\Theta(x, y)| < |\Theta(x, f x)|\) and \(|y| = t|x|\), \(t \in (0, 1]\).

Suppose for \(i = 0, 1, \ldots, j\), \(|\Theta(x, f^i y)| < \theta_0\), where \(0 \leq j \leq \frac{2}{t^2}\). By (2.5), (2.7) and (2.6),

\[
(2.9) \quad |\Theta(f^j y, f^{j+1} y)| \leq \frac{|f^j y|^2}{|x|^2}(1 + \beta)|t^2|x|^2|\Theta(x, f x)| + \frac{\epsilon}{4}|x|^2
\]

\[\leq (1 + \beta)t^2|\Theta(x, f x)| + \frac{\epsilon}{4}|x|^2 \leq t^2|\Theta(x, f x)| + \epsilon t^2|x|^2.
\]

Similarly,

\[
(2.10) \quad |\Theta(f^j y, f^{j+1} y)| \geq t^2|\Theta(x, f x)| - \epsilon t^2|x|^2.
\]

By (2.9),

\[
|\Theta(x, f^{j+1} y)| \leq |\Theta(x, y)| + |\Theta(y, f^{j+1} y)| \leq |\Theta(x, y)| + 2|\Theta(x, f x)| + 2\epsilon|x|^2
\]

\[\leq 3|\Theta(x, f x)| + 2\epsilon|x|^2.
\]

Using (2.6) and (2.8) we get

\[
|\Theta(x, f^{j+1} y)| \leq \left(\frac{\epsilon}{\beta} + 2\epsilon\right) \cdot \frac{\beta}{2\epsilon}\theta_0 \leq \theta_0.
\]

Therefore (2.2) and (2.3) can be obtained by induction.
Thus (2.4) follows.

Proof. Denote $A_x = \frac{1}{2}D^3f_p(x, x, \cdot)$. Also, denote

$$C_x(\beta) = \{v \in \mathbb{R}^2 : \langle v, A_xv \rangle \geq \beta |x|^2 |v|^2 \}.$$

By Proposition 2.1, $Df_xv = v + A_xv + R_F(x)v$. Hence, $|Df_xv|^2 = |v|^2 + 2\langle A_xv, v \rangle + o(|x|^2 |v|^2)$. If $|x|$ is small enough, then

$$|Df_xv|^2 \geq (1 + \frac{2}{3}Ku)|v|^2. \quad (3.1)$$

Note that $C^u_x(\beta)$ is independent of t provided $t \neq 0$. By the continuity of C^u_x, we get that for any e_x in the unit circle, $C^u_p \subseteq C^u_x(\frac{2}{3}Ku)$ and therefore $C^u_p \subseteq \bigcap_{e_x \in S^1} C^u_x(\frac{2}{3}Ku)$. Put $C^u = \bigcap_{e_x \in S^1} C^u_x(\frac{2}{3}Ku)$. It is easy to see by (3.1) that C^u is strictly larger than C^u_p.

Again, by the continuity of C^u_x, there exists $\tilde{r} > 0$ such that $B(p, \tilde{r}) \subseteq \{x : C^u_x \subseteq C^u \}$. Now for any $x \in B(p, \tilde{r})$ and $v \in C^u$, we have $v \in C^u_x(\frac{2}{5}Ku)$. Therefore by (3.1), $|Df_xv| \geq (1 + \frac{1}{5}Ku)|x|^2 |v|^2$. This finishes the proof.

Proposition 3.2. For any $a \in \mathbb{R}^2 \setminus \{0\}$, id $+ A_a$ has an eigenvector in C^u, where A_a denotes $\frac{1}{2}D^3f_p(a, a, \cdot)$.

Proof. Suppose there is $a \in \mathbb{R}^2$ with $|a| = 1$ such that id $+ A_a$ has no eigenvector in C^u. We may assume $\Theta(v, v + A_a v) > 0 \forall v \in C^u$. Thus there exists $\theta_0 > 0$ such that for all unit vectors $v \in C^u$, and unit vectors a' and v' with $|\Theta(a, a')| \leq \theta_0$ and $|\Theta(v, v')| \leq \theta_0$,

$$|A_a v'| \sin \Theta(v', A_a v') > \frac{1}{2} |A_a v| \sin \Theta(v, A_a v). \quad (3.2)$$
Take $x = ta$ for some $t \in (0, \frac{1}{2})$ such that \(\Theta(x, f) + \frac{1}{2}|x|^2 \leq \theta_0 \).

Let \(\hat{v}_i \) be a unit vector in the boundary of \(C^u \) satisfying \(\Theta(v, \hat{v}_i) \geq 0 \) \(\forall \) \(v \in C^u \).

By continuity we can take \(n > 0 \) such that for any \(z_1, z_2 \in B(p, \frac{1}{n}) \),

\[
\Theta(\hat{v}_{z_1}, \hat{v}_{z_2}) < \min_{v \in C^u} \left\{ \frac{1}{32} |A_x v| \sin \Theta(v, A_x v) \right\}.
\]

We may assume that \(n \) is large enough such that

\[
\Theta(v, Df_x v) > \frac{1}{2} |A_x v| \sin \Theta(v, A_x v) \quad \forall v \in C^u,
\]

provided \(z \in B(p, \frac{1}{n}) \) with \(|\Theta(x, z)| \leq \theta_0 \). This is possible because

\[
\tan \Theta(v, Df_x v) = \frac{|A_x v| \sin \Theta(v, A_x v) + |R_F(z)| \sin \Theta(v, R_F(z))}{|v| + |A_x v| \cos \Theta(v, A_x v) + |R_F(z)| \cos \Theta(v, R_F(z))}.
\]

Put \(y = \frac{x}{n} \). Denote \(y_i = f^i y \) and \(\bar{v}^{(i)} = \frac{Df^i y \bar{v}_y}{|Df^i y \bar{v}_y|} \). We may also assume that

Proposition 2.6 and Proposition 2.8 can be applied with \(\epsilon = \frac{1}{2} \). Therefore \(\Theta(x, y_i) \leq \Theta(x, f x) + \frac{1}{2} |x|^2 \leq \theta_0 \) and \(\frac{|x|}{2n} \leq |y_i| \leq \frac{3|x|}{2n} \leq \frac{1}{n} \) \(\forall i = 0, 1, \ldots, n^2 \).

Note that \(Df^i y \subseteq C^u \). We have that \(\forall i = 0, 1, \ldots, n^2, \bar{v}^{(i)} \in C^u \subseteq C^s \) and

\[
\Theta(\bar{v}_{y_0}, \bar{v}_{y_i}) = \Theta(\bar{v}_{y_0}, Df^i \bar{v}_{y_0}) + \Theta(\bar{v}^{(i)}, \bar{v}_{y_i}) \geq \Theta(\bar{v}_{y_0}, Df_x \bar{v}_{y_0}).
\]

By (3.4) and (3.2) we get

\[
\Theta(\bar{v}_{y_0}, Df_x \bar{v}_{y_0}) = \sum_{i=0}^{n^2-1} \Theta(\bar{v}^{(i)}, Df_{y_i} \bar{v}^{(i)}) \geq \sum_{i=0}^{n^2-1} \frac{1}{2} |A_{y_i} \bar{v}^{(i)}| \sin \Theta(\bar{v}^{(i)}, A_{y_i} \bar{v}^{(i)}) \geq \frac{1}{4} |A_x \bar{v}| \sin \Theta(\bar{v}, A_x \bar{v}) \geq \frac{1}{16} |A_x \bar{v}| \sin \Theta(\bar{v}, A_x \bar{v}).
\]

It contradicts (3.5) and (3.3). \(\square \)

We denote by \(\xi^u_{a} \) and \(\xi^s_{a} \) the unit eigenvectors of \(\text{id} + A_a \) in \(C^u \) and \(C^s \), respectively, and by \(1 + \lambda^u_a |a|^2 \) and \(1 - \lambda^s_a |a|^2 \) the corresponding eigenvalues. Also, denote by \(\Xi^u_a \) and \(\Xi^s_a \) the subspaces generated by \(\xi^u_{a} \) and \(\xi^s_{a} \). Since \(A_{t^n} = t^2 A_{a} \), we know that

\[
\xi^u_{t^n a} = \xi^u_{a}, \quad \xi^s_{t^n a} = \xi^s_{a} \quad \text{and} \quad \lambda^u_{t^n a} = \lambda^u_{a}, \quad \lambda^s_{t^n a} = \lambda^s_{a}.
\]

By Lemma 3.1 and Corollary 2.3, \(\tilde{\kappa}^u \leq \lambda^u_a \leq 3\eta \) and \(\tilde{\kappa}^s \leq \lambda^s_a \leq 3\eta \).

Lemma 3.3. For any \(a_1, \ldots, a_n \in \mathbb{R}^2 \setminus \{0\} \), \(\prod_{i=1}^{n} (\text{id} + A_{a_i}) \) has an eigenvector in \(\hat{C}^u \),

where \(A_a = \frac{1}{2} D^3 f_p(a, a, \cdot) \).

Proof. By the proof of Proposition 3.2, we have \(\xi^u_{a} \in \text{int} \hat{C}^u \). (Otherwise we can shrink \(\hat{C}^u \) a little bit and the arguments still work.) This implies \((\text{id} + A_x)\hat{C}^u \subset \hat{C}^u \).

So \(\prod_{i=0}^{n} (\text{id} + A_{a_i})\hat{C}^u \subset \hat{C}^u \). Then the result follows. \(\square \)

Lemma 3.4. If \(r \) is small enough, then \(\forall x \in B(p, r), Df_x \hat{C}^u \subset \hat{C}^u \) and \(Df_x \hat{C}^s \subset \hat{C}^s \).

Proof. This is because \((\text{id} + A_x)\hat{C}^u \subset \hat{C}^u \) and \(\|Df_x - (\text{id} + A_x)\| = O(|x|^3) \). \(\square \)

Remark 3.5. \(Df_x \) has an eigenvector in \(\hat{C}^u \) and an eigenvector in \(\hat{C}^s \) if \(|x| \) is small.
Lemma 3.6. For $a, b \in \mathbb{R}^2 \setminus \{0\}$, denote the matrix of identity $\Xi_a^u \oplus \Xi_a^s \to \Xi_b^u \oplus \Xi_b^s$ by
\[
\begin{pmatrix}
1 + h_{11}(a,b) & h_{12}(a,b) \\
\hline
h_{21}(a,b) & 1 + h_{22}(a,b)
\end{pmatrix}.
\]
Then $\forall i, j = 1, 2$, $|h_{ij}(a', b') - h_{ij}(a'' , b'')| \leq C|\Theta(a', a'')|$, $|h_{ij}(a, b') - h_{ij}(a, b'')| \leq C|\Theta(b', b'')|$, and $|h_{ij}(a, b)| \leq C|\Theta(a, b)|$, where C is a generic constant depending only on f.

Proof. Note that $\forall a \neq 0$, A_a has one positive eigenvalue and one negative eigenvalue. So it is clear that the maps $a \to \xi^u_a, \xi^s_a$ are smooth on $\mathbb{R}^2 \setminus \{0\}$. By (3.6) the result follows.

Lemma 3.7. There exists a unique subspace $E^+ \subseteq \mathbb{R}^2$ such that $\forall a \in E^+ \setminus \{0\}$, a is an eigenvector of A_a with positive eigenvalue, where $A_a = \frac{1}{2} D^3 f_p(a, a, \cdot)$

Proof. The existence follows from the continuity of the map $a \to \Theta(a, A_a a)$.

Now we suppose that there exist x, y with $x, y \in \tilde{C}^u$ and $\Theta(x, y) > 0$ such that $A_x x = \lambda^u_x |x|^2 x$ and $A_y y = \lambda^s_y |y|^2 y$.

First, we assume $\lambda^u_x = \lambda^s_y$. Take such x and y with $x - y \in \tilde{C}^u$ and $|x| \neq |y|$. By the law of cosines, Lemma 2.7 and the fact that $\lim_{t \to 0} \frac{1}{t} |f(t x) - f(t y)| = t |x|^2 + \frac{1}{3} \lambda^u_x t^3 |x|^3 + O(t)$, we obtain that
\[
\frac{3}{t^4} (|f(t y) - f(t x)|^2 - |t y - t x|^2)
\]
\[
= 2 \lambda^u_x |x|^4 + 2 \lambda^s_y |y|^4 - 2 |x| |y| (\lambda^u_x |x|^2 + \lambda^u_y |y|^2) \cos \Theta(y, x) + O(t)
\]
as $t \to 0^+$. Since
\[
\lambda^u_x |x|^4 + \lambda^s_y |y|^4 - |x| |y| (\lambda^u_x |x|^2 + \lambda^u_y |y|^2) = (\lambda^u_x |x|^3 - \lambda^u_y |y|^3) (|x| - |y|).
\]
The right-hand side is positive if t is small. So $|f(t y) - f(t x)| > |t y - t x|$. But the fact $y - x \in \tilde{C}^s$ implies $|f(t y) - f(t x)| < |t y - t x|$, a contradiction.

Next, we assume $\lambda^u_x \neq \lambda^s_y$. In this case, for any x and y, $f(t x) - f(t y)$ is not parallel to $x - y$. Hence we can find x and y such that $x - y \notin \tilde{C}^s$ but $f(t x) - f(t y) \in \tilde{C}^s$. Therefore, there is a point $t z$ between $t x$ and $t y$ such that $D f_{t z} x$ maps a vector outside the cone \tilde{C}^s to \tilde{C}^s. This contradicts Lemma 3.4 which says that $D f_{t z} \tilde{C}^s \supset \tilde{C}^s$ if t is small.

4. Unstable manifolds on M

In this section we prove the existence of an invariant decomposition of the tangent bundle into $TM = E^u \oplus E^s$ (Proposition 4.2) and the existence of “weak” unstable manifolds $W^u(x) := \{ y \in M : \lim_{n \to \infty} d(f^{-n} x, f^{-n} y) = 0 \}$ (Proposition 4.4). E^u_x is tangent to $W^u(x)$ for all $x \in M$ and is continuous everywhere else except the fixed point p. Most of the arguments are routine except for proving that E^u_p is tangent to $W^u(p)$ (Lemma 4.5).

For convenience we will refer to $W^u(x)$ and $W^s_x(x) = \{ y \in M : d(f^{-n} x, f^{-n} y) < \epsilon \ \forall n \geq 0 \}$ as the “unstable manifold” and “local unstable manifold” at x, even though points on the manifolds may not be contracted exponentially in backwards time.
Lemma 4.1. Let \(x \in M \setminus \{ p \} \). Then \(|Df^n_x v| \to \infty \) \(\forall v \in C^\alpha_x \) and \(|Df^{n-1}_x v| \to \infty \) \(\forall v \in C^\alpha_x \), as \(n \to \infty \).

Proof. If \(f^n x \notin B(p, r_0) \) for infinite number of \(n \)'s, then by (1.2) the result is clear.

If there exists \(N > 0 \) such that \(\forall n > N \), \(f^n x \in B(p, r_0) \), then by Lemma 2.5,

\[
|Df^n_x v| \geq |Df^N_x v| \prod_{i=N+1}^{n-1} (1 + \kappa^u |f^i x|^2) \geq |Df^N_x v| \prod_{i=N+1}^{n-1} \left(1 + \kappa^u \frac{1}{3(k+i)\eta} \right)
\]

for some \(k > 1 \). Thus \(|Df^n_x v| \to \infty \). \(\square \)

Proposition 4.2. There exists an invariant decomposition of the tangent bundle into \(TM = E^u \oplus E^s \) such that \(\forall x \in M \), \(E^u_x \subset C^\alpha_x \), \(E^s_x \subset \mathcal{C}^\alpha_x \), and \(Df_x E^u_x = E^u_x \), \(Df_x E^s_x = E^s_x \). Except for the fixed point \(p \), the decomposition is continuous.

Proof. \(E^u_p \) and \(E^s_p \) have been defined in the above section.

For \(x \in M \setminus \{ p \} \), let \(\mathcal{E}^u_x = \bigcap_{n=0}^{\infty} \mathcal{D} f_j^{-n} \mathcal{C}^u_x f_j^{-n} \). Clearly, \(\mathcal{E}^u_x \subset C^\alpha_x \) and \(Df_x \mathcal{E}^u_x = \mathcal{E}^u_x \).

We show that \(\mathcal{E}^u_x \) is a one-dimensional subspace in \(T_x M \). In fact, if there are two independent vectors in \(\mathcal{E}^u_x \), then we can choose \(v, v' \in \mathcal{E}^u_x \) such that \(0 \neq v - v' \in \mathcal{C}^\alpha_x \). By Lemma 4.1 \(|Df^{-n}_x (v - v')| \to \infty \) as \(n \to \infty \). On the other hand, since \(v, v' \in Df_j^{-n} \mathcal{C}^u_x f_j^{-n} \), \(|Df^{-n}_x (v - v')| \leq |Df^{-n}_x v'| + |Df^{-n}_x v| \leq |v| + |v'| \) \(\forall n > 0 \). This is a contradiction.

Put \(E^u_x = \mathcal{E}^u_x \forall x \in M \setminus \{ p \} \).

Now we prove the continuity of \(E^u_x \). Suppose for some \(x_0 \in M \setminus \{ p \} \), there exists a sequence \(\{ x_i \} \) such that \(\lim_{i \to \infty} x_i = x_0 \) and \(\lim_{i \to \infty} E^u_{x_i} = E^u_{x_0} \neq E^u_{x_0} \). Take \(v \in E^u_{x_0} \) with \(|v| = 1 \). Let \(v^u \) and \(v^s \) denote the projection of \(v \) in \(E^u_{x_0} \) and \(E^s_{x_0} \), respectively. Since \(E^u_{x_0} \neq E^u_{x_0} \), \(v^u \neq 0 \). By Lemma 4.1 \(|Df^{-n}_x v^u| \to \infty \) as \(n \to \infty \). Hence, we can find an \(n > 0 \) such that \(|Df^{-n}_x v|^2 \geq 2 \). On the other hand, if we take \(v_i \in E^u_{x_i} \), \(\forall i > 0 \) such that \(\lim_{i \to \infty} v_i = v \), then by the continuity of \(Df^{-n}_x \), we have \(|Df^{-n}_x v_i| = \lim_{i \to \infty} |Df^{-n}_x v_i| \leq 1 \), a contradiction.

Remark 4.3. The decomposition into \(T_x M = E^u_x \oplus E^s_x \) is not continuous at \(p \). This can be seen by using a similar method as in the proof of Proposition 3.2 for vectors in unstable subspaces instead of those in the boundaries of unstable cones. We leave the details to the reader.

Proposition 4.4. For any \(x \in M \), \(W^u_x (x) \) is a curve tangent to \(E^u_x \).

Proof. Let \(x \in M \setminus \{ p \} \). Construct a continuous vector field \(v_y \) in a suitable neighborhood of \(x \) such that \(v_y \in E^u_y \). It is easy to see that the integral curve of the vector field that passes through \(x \) is contained in \(W^u(x) \). To prove that \(W^u(x) \) is also contained in the integral curve passing through \(x \), it is enough to show that any piece of stable curve \(\gamma^s \) intersects \(W^u_x (x) \) at most one point.

In fact, if \(\gamma^s \cap W^u_x (x) \supset \{ y, z \} \) with \(y \neq z \), then by Lemma 4.1, we have \(\lim_{n \to \infty} d(f^{-n} y, f^{-n} x) = 0 \) and \(\lim_{n \to \infty} d(f^{-n} z, f^{-n} x) = 0 \). So \(\lim_{n \to \infty} d(f^{-n} y, f^{-n} z) = 0 \). This contradicts the fact that \(Df^{-n} \) is expanding along the tangent lines of \(\gamma^s \).

Now we consider the case \(x = p \). Let \(\Omega \) be the set of points in \(B(p, \epsilon) \) that can be jointed from \(p \) by a curve tangent to vectors in \(\mathcal{C}^u \). Note that \(f^n(\Omega) \cap B(p, \epsilon) \) is decreasing as \(n \to \infty \). It is easy to check \(W^u_x (p) = \bigcap_{i=0}^{\infty} \left(f^i \Omega \cap B(p, \epsilon) \right) \).

The
above argument on uniqueness shows that $W^u_\epsilon(p)$ is a curve. The differentiability of $W^u_\epsilon(p)$ at p is proved in Lemma 4.5.

Lemma 4.5. $W^u_\epsilon(p)$ is tangent to E^u_p.

Proof. Let $\gamma : [-1, 1] \to W^u_\epsilon(p)$ be the parameter expression with $\gamma(0) = p$. For $x_1, x_2 \in W^u_\epsilon(p)$, we say $x_1 > x_2$, if $x_1 = \gamma(s_1)$, $x_2 = \gamma(s_2)$ and $s_1 > s_2$.

First, we prove that the one side limit $\lim_{s \to 0^+} \frac{\gamma(s)}{|\gamma(s)|}$ exists. Suppose there are two sequences $x'_n = \gamma(s'_n)$, $x''_n = \gamma(s''_n)$, $s'_n, s''_n \to 0$ as $n \to \infty$, and two unit vectors e', e'' such that $\frac{x'_n}{|x'_n|} = e'$ and $\frac{x''_n}{|x''_n|} = e'' \forall n > 0$. Without loss of generality we assume $\Theta(e', e'') \geq 0$ and $x'_1 > x''_1 > x'_2 > x''_2 > \ldots$. Let $e = \frac{\beta' e' + \beta'' e''}{|\beta' e' + \beta'' e''|}$ for some $\beta', \beta'' > 0$. Take $y_n, z_n \in W^u_\epsilon(p)$ such that

$$y_n = \sup\{y < x'_n : |y| |e|\} \quad \text{and} \quad z_n = \sup\{z < x''_n : |z| |e|\}.$$

By Corollary 2.3, $|f y_n - y_n| \leq \eta |y_n|^3$. Thus, if n is large enough, then $y_n < f y_n < x'_n$, and therefore $\Theta(f y_n, y_n)$ and $\Theta(x'_n, y_n)$ have the same sign, i.e., $\Theta(f y_n, y_n) > 0$. Similarly, we have $\Theta(f z_n, z_n) < 0$. Thus, by Lemma 2.7 we get $\Theta(e, D^3 f y_n(e, e, e)) = 0$. Since β' and β'' are arbitrary, by Lemma 3.7 we must have $e' = e''$. So the limit $e_+^u := \lim_{s \to 0^+} \frac{\gamma(s)}{|\gamma(s)|}$ exists.

Now we prove $e^u_+ \in E^u_p$. Suppose it is not true. We may assume $\Theta(e^u_+, A e^u_+ e^u_+) > 0$. By Lemma 2.7 $\lim_{t \to 0^+} \Theta(te^u_+, f(te^u_+)) > 2\beta > 0$ for some $\beta > 0$. Hence, we can find $t_0 > 0$, $\theta_0 > 0$ such that for any $z \in \Gamma := \{y : |y| \leq t_0, |\Theta(y, e^u_+)| \leq \theta_0\}$,

$\Theta(z, f z) > \beta |z|^2$. Also, we can find $s_0 > 0$ such that the piece of unstable curve $\{\gamma(s) : 0 \leq s \leq s_0\}$ is contained in Γ. Take any point x in this curve. We have

$\Theta(f^{-n} x, x) = \sum_{i=1}^{n} \Theta(f^{-i} x, f^{-i+1} x) \geq \beta \sum_{i=1}^{n} |f^{-i} x|^2$. By Lemma 2.5, $\sum_{i=1}^{n} |f^{-i} x|^2$ is unbounded. This contradicts the fact that $f^{-i} x \in \Gamma \forall i > 0$.

Similarly, the limit $e^-_u := \lim_{s \to 0^-} \frac{\gamma(s)}{|\gamma(s)|}$ exists and satisfies $e^-_u \in E^u_p$.

Though E^u_x and E^s_x are not continuous at p, they are contained in C^u_x and C^s_x. Therefore, we know that f has a local product structure, i.e., there exist constants $\epsilon > 0$, $\delta > 0$, such that $\forall x, y \in M$ with $d(x, y) \leq \delta$, $[x, y] := W^u_\epsilon(x) \cap W^s_\epsilon(y)$ contains exactly one point.

Lemma 4.6. Let $x \in B(p, r_0)$ and y be in the W^u-segment connecting x and $[x, f x]$. Then

$$d(x, y) \leq Cd(x, f x) \quad \text{and} \quad d(x, y) \leq \eta C|x|^3,$$

for some generic constant, which is allowed to depend only on f.

Proof. Use the fact that C^u_x and C^s_x are bounded away from each other to get the first inequality. The second one then follows from Corollary 2.3.
5. Coordinate systems

The purpose of this section is to choose a suitable coordinate system at each tangent space, under which we can prove that at most points in M, Df_x contract angles between vectors in E^u. This is important for the proof of the local Hölder condition in next section.

Let $\hat{E}_x^u \oplus \hat{E}_x^s$ be any coordinate system such that $\hat{E}_x^u \subset C^u_x$ and $\hat{E}_x^s \subset C^s_x \forall x \in M$. Under the coordinate systems, for each $x \in M$ there exists a correspondence π_x from the unit circle in the tangent space $T_x M$ to $\mathbb{R} \cup \{\infty\}$ such that if $\pi_x \epsilon = \sigma$, then ϵ and $(1, \sigma)$ are collinear. The correspondence is one-to-one if we identify $-\epsilon$ with ϵ.

For simplicity of notations, we say $\sigma_x \in C^u$ if $\pi_x^{-1} \sigma_x \in C^u_{\pi_x}$, and $\sigma \in C^u$ if $\sigma_x \in C^u_x \forall x \in M$. In particular, we denote by σ^u the unique function that satisfies $\sigma \in E^u$.

Suppose $(f_{ij}(x))$ is the matrix expression of $Df_x : E^u_x \oplus E^s_x \rightarrow E^u_{f_x} \oplus E^s_{f_x}$. With respect to the coordinate systems, Df_x induces a map F_x on \mathbb{R} given by

$$F_x \sigma = (f_{21}(x) + f_{22}(x)\sigma)(f_{11}(x) + f_{12}(x)\sigma)^{-1} \quad \forall \sigma \in \mathbb{R}.\tag{5.1}$$

For any σ, we define $F^\sigma = F \circ \sigma \circ f^{-1}$, i.e., $(F^\sigma)(x) = F_{f^{-1}}(x)\sigma(f^{-1}x)$. Clearly, $F^\sigma \in C^u$ if $\sigma \in C^u$ and $F^\sigma \in E^u$ if $\sigma \in E^u$.

Lemma 5.1. For any $\sigma \in C^u$, $\lim_{n \rightarrow \infty} (F^n \sigma)(x) = \sigma^u(x) \forall x \in M \setminus \{p\}$.

Proof. Note that $(F^n \sigma)(x) \in Df^n_{f^{-n}x} C^u_{f^{-n}x}$. By the proof of Proposition 4.2,

$$\lim_{n \rightarrow \infty} (F^n \sigma)(x) \in \bigcap_{n=0}^{\infty} Df^n_{f^{-n}x} C^u_{f^{-n}x} = E^u_x.\tag{5.5}$$

Consider a particular coordinate system $\Xi^u_x \oplus \Xi^s_x$ on $T_x M \forall x \in B(p, r_0)$, where Ξ^u_x and Ξ^s_x are eigenspaces of $A_x = \frac{1}{2} D^3 \phi(p, x, \cdot)$.

Lemma 5.2. Suppose $r_0 > 0$ is small sufficiently. Then with respect to the decomposition $TM_x = \Xi^u_x \oplus \Xi^s_x \forall x \in B(p, r_0)$, the induced map F_x of Df_x satisfies the following.

i) There exists a constant $C_0 > 0$ such that $\forall \sigma \in \tilde{C}^u$,

$$|F_x \sigma - F_0 \sigma| \leq C_0 |x|^{-1} d(x, y) \quad \forall x \in B(p, r_0), \quad y \in B(x, |x|^3).\tag{5.2}$$

ii) There exist constants $\kappa', \eta' > 0$, sectors $S^s_{\theta^u} = \{y \in B(p, r_0) : |\Theta(y, E^u_x)| \leq \theta^u\}$ and $S^s_{\theta^s} = \{y \in B(p, r_0) : |\Theta(y, E^s_x)| \leq \theta^s\}$ for some $\theta^u, \theta^s > 0$ such that

$$\forall \sigma_1, \sigma_2 \in \tilde{C}^u,$

$$|F_x(\sigma_1 - \sigma_2)| \leq (1 - \kappa' |x|^2)|\sigma_1 - \sigma_2| \quad \forall \sigma \in S^s_{\theta^u} \cup S^s_{\theta^s},\tag{5.3}$$

$$|F_x(\sigma_1 - \sigma_2)| \leq (1 - \eta' |x|^2)|\sigma_1 - \sigma_2| \quad \forall \sigma \in B(p, r_0) \setminus (S^s_{\theta^u} \cup S^s_{\theta^s}).\tag{5.4}$$

Proof. Note that $Df_x \xi_x^u = (1 + \lambda_x^u |x|^2) \xi_x^u + R_x \xi_x^u$ and $Df_x \xi_x^s = (1 - \lambda_x^s |x|^2) \xi_x^s + R_x \xi_x^s$. The matrix of $Df_x : \Xi^u_x \oplus \Xi^s_x \rightarrow \Xi^u_{f_x} \oplus \Xi^s_{f_x}$ can be expressed as

$$\begin{pmatrix}
1 + g_{11}(x) & g_{12}(x) \\
g_{21}(x) & 1 + g_{22}(x)
\end{pmatrix} = \begin{pmatrix}
1 + h_{11}(x, f_x) & h_{12}(x, f_x) \\
h_{21}(x, f_x) & 1 + h_{22}(x, f_x)
\end{pmatrix}
\times \begin{pmatrix}
1 + \lambda_x^u |x|^2 + O(|x|^2) & O(|x|^2) \\
O(|x|^2) & 1 - \lambda_x^s |x|^2 + O(|x|^2)
\end{pmatrix}, \tag{5.5}
$$
where h_{ij} are as in Lemma 3.6.

By (5.1) we get
\begin{equation}
F_x \sigma = (g_{21}(x) + \sigma + g_{22}(x)\sigma)(1 + g_{11}(x) + g_{12}(x)\sigma)^{-1},
\end{equation}
\begin{equation}
|F_x(\sigma_1 - \sigma_2)| = \frac{1 + g_{11}(x) + g_{22}(x) + g_{11}(x)g_{22}(x) - g_{12}(x)g_{21}(x)}{(1 + g_{11}(x) + g_{12}(x)\sigma)^2} |\sigma_1 - \sigma_2|,
\end{equation}
where σ in (5.7) is between σ_1 and σ_2.

By Lemma 3.6, $|h_{ij}(x, f) - h_{ij}(y, f)| \leq C|\Theta(x, y)| + C|\Theta(f, x)| \leq 3C|\Theta(x, y)|$. It is easy to see by (3.6) and the linearity of A, that $|\lambda^u_x - \lambda^u_y| \leq 3C|\Theta(x, y)|$, if C is large enough. Note that $|\Theta(x, y)| \leq |x|^{-1}d(x, y)$ and $|x|^2 - |y|^2 \leq 3|x|d(x, y)$. Therefore, (5.2) follows from (5.5) and (5.6).

By Lemma 2.7, $|\Theta(x, f)| = O(|x|^2)$. So (5.4) follows from (5.5) and (5.7).

Moreover, if $x \in E^u_p$ or E^p_u, then $\Theta(x, f) = o(|x|^2)$. Hence $h_{ij}(x, f) = o(|x|^2)$ as $x \to 0$. So $g_{11}(x) = \lambda^u_x + o(|x|^2)$, $g_{22}(x) = -\lambda^u_x + o(|x|^2)$, and $g_{12}(x), g_{21}(x) = o(|x|^2)$. Thus, (5.3) holds for these x. Then we use continuity.

Let $\beta > 0$ small. For $x \in B(p, r_0)$, take $k = k(x)$ such that
\begin{equation}
1 + 2\beta \leq \prod_{i=0}^{k-1} (1 + |f^i(x)|^2) \leq 1 + 4\beta.
\end{equation}

Considering Proposition 2.6, we have that exist $0 < c_1 \leq c_2 \leq 1$ such that
\begin{equation}
c_1 \leq |x|^2 \leq c_2.
\end{equation}

Lemma 5.3. There exists $C'_\beta > 0$ such that
\begin{equation}
\|Df^k_x - Df^k_y\| \leq kC'_\beta|x|d(x, y) \quad \forall x \in B(p, r_0), \ y \in B(x, |x|^3).
\end{equation}

Proof. We have
\begin{equation}
\|Df^k_x - Df^k_y\| \leq \sum_{j=0}^{k-1} \|Df^j_x - Df^j_y\| \|Df^{j+1}_x - Df^{j+1}_y\| \|Df^{j+1}_x - Df^{j+1}_y\|.
\end{equation}

By Proposition 2.1, $\|Df^j_x - Df^j_y\| \leq C'|f^j(x)|d(f^j(x), f^j(y))$ for some $C' > 0$. Also, by Corollary 2.3, $\|Df^j_x\| \leq \prod_{i=0}^{j-1} (1 + 3|f^i(x)|^2) \leq \prod_{i=0}^{j-1} (1 + |f^i(x)|^2)^3$. Since the difference among x, $|f^i(x)|$ and $|f^j(x)|$ are of higher order, we have
\begin{equation}
\|Df^j_x - Df^j_y\| \leq kC'(1 + 4\beta)^3|x|d(x, y).
\end{equation}

Suppose $(f_{ij}^{(k)}(x))$ is the matrix expression of $Df^k_x : \Xi_{x, k} \to \Xi_{f^k(x), k}$, where $\Xi_{x, k}$ and $\Xi_{f^k(x), k}$ are eigenspaces of $\prod_{i=0}^{k-1} (\delta + \frac{1}{2}D^3f_{ip}(f^i(x), f^i(x), \cdot))$. It induces a map on \mathbb{R} by
\begin{equation}
F_x^k \sigma = (f_{11}^{(k)}(x) + f_{21}^{(k)}(x)\sigma)(f_{11}^{(k)}(x) + f_{12}^{(k)}(x)\sigma)^{-1} \quad \forall \sigma \in \mathbb{R}.
\end{equation}

Lemma 5.4. The map F_x^k satisfies the following.
Proof. The matrix \((f_{ij}^{(k)}(x)) \) can be written as
\[
\begin{pmatrix}
 f_{11}^{(k)}(x) & f_{12}^{(k)}(x) \\
 f_{21}^{(k)}(x) & f_{22}^{(k)}(x)
\end{pmatrix} =
\begin{pmatrix}
 1 & h_{11}^{(k)}(x, f^k x) \\
 h_{21}^{(k)}(x, f^k x) & 1
\end{pmatrix}
\begin{pmatrix}
 \bar{f}_{11}^{(k)}(x) & \bar{f}_{12}^{(k)}(x) \\
 \bar{f}_{21}^{(k)}(x) & \bar{f}_{22}^{(k)}(x)
\end{pmatrix},
\]
where \((\bar{f}_{ij}^{(k)}(x)) \) is the matrix of \(D f^k \) with respect to the coordinate system \(\Xi^u_{x,k} \oplus \Xi_{x,k}^s \), and \((h_{ij}^{(k)}(x)) \) is the matrix of identity \(\Xi^u_{x,k} \oplus \Xi_{x,k}^s \to \Xi^u_{f^k x,k} \oplus \Xi_{f^k x,k}^s \).

By (5.9),
\[
|F_x^{(k)}(\sigma_1 - \sigma_2)| = \frac{|f_{11}^{(k)}(x)f_{22}^{(k)}(x) - f_{12}^{(k)}(x)f_{21}^{(k)}(x)|}{\left(f_{11}^{(k)}(x) + f_{12}^{(k)}(x) \sigma \right)^2} |\sigma_1 - \sigma_2|,
\]
where \(\sigma \) is between \(\sigma_1 \) and \(\sigma_2 \).

Similarly, we have \(|h_{ij}^{(k)}(x, f^k x) - h_{ij}^{(k)}(y, f^k y)| \leq C|\Theta(x, y)| + C|\Theta(f^k x, f^k y)| \leq 3C|\Theta(x, y)| \leq 4C|x|^{-1} d(x, y) \). By (5.8) and Lemma 5.3, \(|\bar{f}_{21}^{(k)}(x) - \bar{f}_{21}^{(k)}(y)| \leq C' \rho k|x|^{-1} d(x, y) \). Hence (5.10) follows from (5.13), (5.8) and (5.9).

Since \(\bar{f}_{ij}^{(k)}(x) \) and \(h_{ij}^{(k)}(x, f^k x) \) are bounded, (5.12) follows from (5.13) and (5.14).

Now it remains to prove (5.11). Note that \(\forall v \in \Xi^u_{f^k x,k} \) with \(|v| = 1 \),
\[
\left| \left(\prod_{i=0}^{k-1} (\text{id} + A_{f^{i}}) \right) v \right| \geq \prod_{i=0}^{k-1} (1 + \kappa^u |f^{i} x|) \geq (1 + \beta)^{\kappa^u},
\]
where \(A_{x} = \frac{1}{2} D^3 f_p(x, x, \cdot) \). Also note that by Proposition 2.1 and (5.8),
\[
\left\| D f^k_x - \prod_{i=0}^{k-1} (\text{id} + A_{f^{i}}) \right\| = kO(|x|^3) = O(|x|).
\]
So given \(\epsilon > 0 \), we can take \(r_0 \) such that \(f^{(k)}_{11}(x) \geq (1 + \beta)^{\kappa^u} - \epsilon \) and \(|f^{(k)}_{12}(x)| \leq \epsilon \) \(\forall x \in B(p, r_0) \). For the same reason, we have \(|f^{(k)}_{21}(x)| \leq \epsilon, |f^{(k)}_{22}(x)| \leq (1 - \beta)^{\kappa^u} + \epsilon \).

Since \(x \in S_{r_0}^u \cup S_{r_0}^s \), \(f, f^k x \) are close to \(E_{p}^u \) or \(E_{p}^s \), and the eigenvectors are close to \(\Xi_{f^k x,k}^u \) and \(\Xi_{f^k x,k}^s \). Hence \(|h^{(k)}_{ij}(x, f^k x)| \leq \epsilon \). Now we obtain that the matrices \(\left(f_{ij}^{(k)}(x) \right) \) satisfies the following condition:
\[
|f^{(k)}_{11}(x)| \geq (1 + \beta)^{\kappa^u} - \epsilon, \quad |f^{(k)}_{12}(x)| \leq \epsilon, \quad |f^{(k)}_{21}(x)| \leq \epsilon, \quad |f^{(k)}_{22}(x)| \leq (1 - \beta)^{\kappa^u} + \epsilon,
\]
where \(c \) is a constant independent of \(\epsilon \). So we can take \(\epsilon \) small enough such that (5.14) implies (5.11).
For \(r \in (0, r_0) \), denote \(S^c_r = B(p, r) \cap S^u_{r_0} \), \(S^s_r = B(p, r) \cap S^s_{r_0} \) and \(S^c_r = B(p, r) \\setminus (S^u_r \cup S^s_r) \).

Let \(\Lambda \subset M \). For \(x \in \Lambda \), denote by \(\tau^\pm_k(x) \) the maximal nonnegative integers such that \(\forall k = 0, 1, \cdots, \tau^\pm_k(x), f^k x \in \Lambda \).

Lemma 5.5. Let \(\beta \geq 0 \). For each \(x \in S^c_{r_0} \), take \(-\tau^\pm_{S^c_{r_0}}(x) = n_0 < n_1 < \cdots < n_m = \tau^\pm_{S^c_{r_0}}(x) \) such that \(1 + 2\beta \leq \prod_{i=n_j - 1}^{n_j - 1} (1 + |f^i x|^2) \leq 1 + 4\beta \forall j = 1, \cdots, m \). Then \(m \) is bounded for all \(x \in S^c_{r_0} \).

Proof. Denote \(\tau^\pm(x) = \tau^\pm_{S^c_{r_0}}(x) \). Fix an \(z \in S^c_{r_0} \) such that \(f^{-\tau^-} \in S^u_{r_0} \) and \(f^{\tau^+} \in S^s_{r_0} \). We may assume \(e^{4|f^i z|^2} \leq 1 + 4\beta \forall -\tau^- \leq j \leq \tau^+ \).

We only need to consider the case that
\[
|f^i x| \leq \frac{1}{2} \min\{|f^i z|: -\tau^- \leq j \leq \tau^+, \tau^- - 1 \leq j \leq \tau^+\}, \quad -\tau^- - 1 \leq i \leq \tau^+.
\]
Otherwise, the result is clear.

For \(-\tau^- \leq j \leq \tau^+ \), let \(S_j \subset B(p, r_0) \) be the smaller sector bounded by rays from the origin to \(f^j z \) and \(f^{j+1} z \). Let \(i_j \) be the smallest integer \(k \) such that \(f^k x \in S_j \). Thus, \(|f^i x| = t_j |f^j z| \) for some \(0 < t_j \leq \frac{1}{2} \). By Proposition 2.8, there are at most \(2j^2 \) successive \(f^i x \)'s in \(S_j \). By Proposition 2.6, each of them satisfies
\[
|f^i x| \leq \sqrt{2} t_j |f^j z|.
\]
Thus,
\[
\prod_{f^i x \in S_j} (1 + |f^i x|^2) \leq \left(1 + 2t_j^2 |f^j z|^2\right)^{\frac{|\tau^+|}{2}} \leq e^{4|f^j z|^2} \leq 1 + 4\beta.
\]
It means that \(m = m(x) \leq \tau^+(z) + \tau^-(z) + 1 \). \(\square \)

Lemma 5.6. There exists \(D > 0 \) such that \(\forall x \in S^c_{r_0}, \)
\[
\prod_{i=-\tau^-}^{\tau^+} (1 + |f^{-i} x|^2) < D,
\]
where \(\tau^\pm(x) = \tau^\pm_{S^c_{r_0}}(x) \).

Proof. This is a direct corollary of Lemma 5.5. \(\square \)

Now we construct the coordinate systems.

Choose \(0 < \hat{r} < r_0 \) such that for any \(x \in S^c_{r_0} \setminus S^c_{\hat{r}} \) with \(f^{\tau^+(x)+1} \in S^s_{\hat{r}} \), then
\[
\prod_{i=-\tau^-}^{\tau^+(x)-1} (1 - \frac{1}{2} \kappa |f^i x|^2) \leq \frac{1}{D^{2\eta'}}.
\]
where \(\tau^\pm(x) = \tau^\pm_{S^c_{r_0}} \setminus S^c_{\hat{r}}(x) \) and \(\kappa' \) and \(\eta' \) are as in Lemma 5.2.ii).

Denote
\[
\Gamma = \{ y \in B(p, r_0) : 0 \leq -\tau^-_{B(p, r_0)}(y) \leq i \leq \tau^+_{B(p, r_0)}(y) \text{ s.t. } f^i y \in S^c_{\hat{r}} \}.
\]
Choose \(0 < r^* < \hat{r} \) such that \(B(p, r^*) \setminus W^u_{r_0}(p) \subset \Gamma \). In other words, for any \(x \in B(p, r^*) \setminus W^u_{r_0}(p) \), if we iterate backwards, then the orbit of \(x \) goes to \(S^c_{\hat{r}} \) before it leaves \(B(p, r_0) \). We also assume that \(r^* \) is small enough such that \(\forall x \not\in B(x, r_0) \),
\[\hat{C}_x := \bigcup_{y \in B(x, r^*)} \pi_y^{-1} \pi_y C_y^u \text{ and } \check{C}_x := \bigcup_{y \in B(x, r^*)} \pi_y^{-1} \pi_y C_y^s \] are still bounded away from each other.

For \(x \in S_{y_0} \cup S_{y/2} \cup S_{y_0}^u \), let \(\hat{E}_x^u \oplus \check{E}_x^s \) coincide with \(\Xi_x^u \oplus \Xi_x^s \). Then we extend these coordinate systems to \(M \setminus \{p\} \) in such a way that \(\hat{E}_x^u \oplus \check{E}_x^s \) remains \(C^1 \) and with respect to these coordinate systems, \(\zeta_x \leq 1 + \eta|z|^2 \) for \(x \in S_{\rho}^\delta \) and \(\zeta_x < 1 \) for \(x \notin B(p, r^*) \), where

\[\zeta_x = \min \{ \zeta : |F_x \sigma_1 - F_x \sigma_2| \leq \zeta |\sigma_1 - \sigma_2| \text{ for } \forall \sigma_1, \sigma_2 \in \check{C}_x^u \}. \]

Since \(\hat{E}_x^u \oplus \check{E}_x^s \) are \(C^1 \), there exists a constant \(C_0 > 0 \) such that for all \(x \in M \setminus B(p, r^*) \), \(y \in B(x, r^*) \),

\[|F_x \sigma - F_y \sigma| \leq \frac{C_0}{\rho_x} d(x, y) \quad \forall \sigma \in \check{C}_x^u. \]

We may regard this \(C_0 \) the same as that in (5.2).

6. Local Hölder condition

In this section we prove that for any \(x \in M \setminus \{p\} \), there exists a neighborhood in which Hölder condition holds with a constant depending on \(x \). We call this property local Hölder condition.

Proposition 6.1. There exist constants \(H > 0, \theta > 0 \) and \(r^* > 0 \), such that for all \(x \in M \setminus \{p\} \),

\[d(E_x^u, E_y^u) \leq \frac{H}{\rho_x^{\theta}} d(x, y)^\theta \quad \forall y \in B(x, \rho_x^3), \]

where \(\rho_x = \min \{|x|, r^*\} \).

We will prove it by showing the following result.

Lemma 6.2. Let \(\{\hat{E}_x^u \oplus \check{E}_x^s : x \in M\} \) be constructed as in the last section. There exist constants \(H > 0, \theta > 0 \) and \(r^* > 0 \) such that if \(x \in M \setminus \{p\} \), \(y \in B(x, \rho_x^3) \), where \(\rho_x = \min \{|x|, r^*\} \), then

\[|\sigma^u(x) - \sigma^u(y)| \leq \frac{H}{\rho_x^{\theta}} d(x, y)^\theta. \]

Before we prove the lemma, we give the following fact.

Lemma 6.3. Lemma 6.2 implies Proposition 6.1.

Proof. Recall that \(\pi_y \) is a map from the unit circle of \(T_y M \) to \(\mathbb{R} \cup \{\infty\} \). By choosing a suitable branch we may think \(\pi_y^{-1} \) is well defined. Since \(\hat{C}_x^u \) and \(\check{C}_x^s \) are bounded away from each other, restricted to \(\hat{C}_x^u \), both \(\pi_y \) and \(\pi_y^{-1} \) are Lipschitz with a Lipschitz constant \(L \forall y \in M \). Denote \(e^u(y) = \pi_y^{-1} \sigma^u(y) \).

First, consider the case that \(x \in B(p, r^*) \). We have

\[d(e^u(x), e^u(y)) \leq L \left| \pi_x e^u(x) - \pi_x e^u(y) \right| \]

\[\leq L \left(|\pi_x e^u(x) - \pi_y e^u(y)| + |\pi_y e^u(y) - \pi_x e^u(y)| \right). \]
Denote $\sigma' = \pi_x e^u(y)$. We know $\pi_y e^u(y) - \pi_x e^u(y) = \pi_y \pi_x^{-1} \sigma' - \sigma'$. By Lemma 3.6 and the definition of π_x,

$$|\pi_y \pi_x^{-1} \sigma' - \sigma'| = \left| \frac{h_{21}(x, y) + h_{22}(x, y)\sigma'}{1 + h_{11}(x, y) + h_{12}(x, y)\sigma'} - \sigma' \right| \leq C' |Theta(x, y)|$$

for some $C' > 0$. Since $d(x, y) \leq \rho_x^3 = |x|^3$, we have

$$|Theta(x, y)| \leq \left| \frac{d(x, y)}{|x|} \right| = \frac{d(x, y)^{1-\theta}}{|x^{1-3\theta}|} \cdot \frac{d(x, y)^{\theta}}{|x^{3\theta}|} \leq \frac{|x|^2 \cdot d(x, y)^{\theta}}{\rho_x^{3\theta}}.$$

By Lemma 6.2,

$$|\pi_x e^u(x) - \pi_y e^u(y)| = |\sigma^u(x) - \sigma^u(y)| \leq \frac{H}{\rho_x^{3\theta}} d(x, y)^{\theta}.$$

Thus,

$$d(e^u(x), e^u(y)) \leq L(H + C'|x|^2) \frac{d(x, y)^{\theta}}{\rho_x^{3\theta}}.$$

We get the inequality in Proposition 6.1 for $x \in B(p, r^*)$ with $L(H + C'r^{*2})$ instead of H.

Similarly, since the coordinate systems is C^1 on $M \setminus B(p, r^*)$, we can find a constant $C'' > 0$ such that

$$|\pi_y \pi_x^{-1} \sigma' - \sigma'| \leq C'' d(x, y) \leq C'' r^{*3\theta} \frac{d(x, y)^{\theta}}{\rho_x^{3\theta}}.$$

The rest of the arguments are the same as above. \qed

Proof of Lemma 6.2. Take $\theta > 0$ such that for $x \in B(p, r_0)$,

$$\begin{align*}
(6.1a) & \quad (1 - \frac{3}{4} \kappa' |x|^2)(1 + \eta |x|^2)^{3\theta}(1 + 4\eta |x|^2)^{\theta} \leq 1 - \frac{1}{2} \kappa' |x|^2 \quad \forall x \in B(p, r_0), \\
(6.1b) & \quad (1 + \frac{3}{2} \eta' |x|^2)(1 + \eta |x|^2)^{3\theta}(1 + 4\eta |x|^2)^{\theta} \leq 1 + 2\eta' |x|^2 \quad \forall x \in B(p, r_0), \\
(6.1c) & \quad \frac{1 + \zeta_x}{2} \|Df^{-1}|_{fB(x, r_0^2)}\|^{\theta} \leq 1 \quad \forall x \not\in B(p, r^*),
\end{align*}$$

where κ' and η' are as in Lemma 5.2.ii), and ζ_x is as in (5.15).

Take

$$H \geq \max \left\{ \frac{4C_0}{\kappa'}, \frac{2C_0}{\eta'}, \frac{2C_0 r^*}{1 - \zeta_x}, \frac{2^{1+\theta} B \|Df^{-1}\|^{\theta}}{1 - \zeta_x} \right\},$$

where C_0 is as in (5.2) and (5.16) and B is the bound of all $\sigma \in \tilde{C}^n$ with respect to coordinate systems $\tilde{E}_x^u \oplus \tilde{E}_x^s$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Define a function \(s : M \to [1, D^{2\eta}] \) by putting

\[
s_x = \begin{cases}
\max \{1, D^{2\eta} \prod_{i=1}^{\tau_\infty''(x)} \left(1 - \frac{\eta'}{2} |f^{-i}x|^2 \right) \} & x \in S^{s}_{r_0} \setminus S^{s}_{r_1}; \\
1, & x \in S^{s}_{r_1}; \\
\prod_{i=1}^{\tau_\infty''(x)} \left(1 + 2\eta'|f^{-i}x|^2 \right), & x \in S^{s}_{r_1} \cap \Gamma; \\
D^{2\eta} & \text{otherwise},
\end{cases}
\]

where \(\tau_B^-(x) = \tau_{B(p,r_0)}^-(x) \) and \(\tau_S^- (x) = \tau_{S(r_0)\cap \Gamma}^- (x) \).

Let

\[
\mathcal{H} = \left\{ \sigma \in C^u : |\sigma^n(x) - \sigma^n(y)| \leq \frac{s_x \|H\|}{\rho_2^\theta} d(x, y)^\theta \quad \forall x \in M, y \in B(x, \rho_2^3) \right\}.
\]

\(\mathcal{H} \) is closed in the sense that for a sequence \(\{\sigma_n\}_{n=1}^{\infty} \subset \mathcal{H} \) if \(\lim_{n \to \infty} \sigma_n = \sigma \) pointwise, then \(\sigma \in \mathcal{H} \). In fact, \(\forall x \in M \forall \beta > 0 \), we can find \(N > 0 \) such that for all \(n > N \)

\[
|\sigma_n(x) - \sigma(x)| \leq \beta.
\]

Thus \(\forall y \in B(x, \rho_2^3) \),

\[
|\sigma_n(y) - \sigma(x)| \leq |\sigma_n(y) - \sigma_n(x)| + |\sigma_n(x) - \sigma(x)| \leq \frac{s_x \|H\|}{\rho_2^\theta} d(x, y)^\theta + \beta.
\]

Since \(\lim_{n \to \infty} \sigma_n(y) = \sigma(y) \) and \(\beta \) are arbitrary, \(|\sigma(y) - \sigma(x)| \leq \frac{s_x \|H\|}{\rho_2^\theta} d(x, y)^\theta \). Hence \(\sigma \in \mathcal{H} \).

Let \(\sigma \in \mathcal{H} \). Take \(x \in M \) and \(y \in B(x, \rho_2^3) \). We will show that

\[
(6.2) \quad |(\mathcal{F}\sigma)(f x) - (\mathcal{F}\sigma)(f y)| \leq \frac{s_x \|H\|}{\rho_2^\theta} d(f x, f y)^\theta.
\]

If it is true, then we have \(\mathcal{F}\mathcal{H} \subset \mathcal{H} \). So by Lemma 5.1 and the closeness of \(\mathcal{H} \), for any \(\sigma \in \mathcal{H} \), \(\sigma^n = \lim_{n \to \infty} \mathcal{F}^n \sigma \in \mathcal{H} \), which will complete the proof.

We point out here that it is enough to consider the case \(y \in B(x, \rho_2^3) \). Because if \(d(x, y) > \rho_2^3 \), then

\[
d(f x, f y) \geq \frac{d(x, y)}{||Df^{-1}||} > \frac{\rho_2^3}{||Df^{-1}||} \geq \frac{\rho_2^3}{2||Df^{-1}||}.
\]

So by the choice of \(H \) we have \(\frac{H}{\rho_2^\theta} d(f x, f y)^\theta \geq \frac{H}{(2||Df^{-1}||)^\theta} \geq 2B \), which means that (6.2) is always true.

Now suppose \(x \in M \setminus \{p\} \) and \(y \in B(x, \rho_2^3) \). We have

\[
|(\mathcal{F}\sigma)(f x) - (\mathcal{F}\sigma)(f y)| \leq |F_x \sigma(x) - F_y \sigma(y)| + |F_x \sigma(y) - F_y \sigma(y)|
\]

(6.3)

We consider the following cases.

Case I: \(x \in S^{s}_{r_0} \cup S^{u}_{r_0} \).
By (6.3) and Lemma 5.2,
\[|(F\sigma)(fx) - (F\sigma)(fy)| \leq \frac{C_0d(x, y)}{|x|} + (1 - \kappa'|x|^2)|\sigma(x) - \sigma(y)| \]
\[\leq \frac{C_0d(x, y)}{|x|} + (1 - \kappa'|x|^2)\frac{s_xH}{\rho_x^{3\theta}}d(x, y)^\theta \]
\[= \left(\frac{C_0d(x, y)^{1 - \theta} \rho_x^{3\theta}}{|x|} + (1 - \kappa'|x|^2)s_xH\right) \left(\frac{\rho_{fx}}{\rho_x}\right)^{3\theta} \left(\frac{d(x, y)}{d(fx, fy)}\right)^\theta \frac{1}{\rho_{fx}^{3\theta}}d(fx, fy)^\theta. \]

Since \(\rho_x \leq |x|, d(x, y) \leq |x|^3 \) and \(s_x\kappa'H \geq 4C_0 \), we have
\[\frac{C_0d(x, y)^{1 - \theta} \rho_x^{3\theta}}{|x|} + (1 - \kappa'|x|^2)s_xH \]
\[\leq C_0|x|^2 + (1 - \kappa'|x|^2)s_xH \leq (1 - \frac{3}{4}\kappa'|x|^2)s_xH. \]

By the definition of \(s_x \) and \(\rho_x \), Corollary 2.3 and 2.4,
\[\left(\frac{\rho_{fx}}{\rho_x}\right)^{3\theta} \leq (1 + \eta|x|^2)^{3\theta}, \left(\frac{d(x, y)}{d(fx, fy)}\right)^{\theta} \leq (1 + 4\eta|x|^2)^{\theta}, (1 - \frac{\kappa'}{2}|x|^2)s_x \leq s_{fx}. \]

Therefore, (6.2) follows from (6.1a).
Case II: \(x \in S_\delta^c \cap \Gamma. \)
Similarly,
\[|(F\sigma)(fx) - (F\sigma)(fy)| \leq \frac{C_0d(x, y)}{|x|} + (1 + \eta'|x|^2)|\sigma(x) - \sigma(y)| \]
\[\leq \frac{C_0d(x, y)}{|x|} + (1 + \eta'|x|^2)\frac{s_xH}{\rho_x^{3\theta}}d(x, y)^\theta \]
\[= \left(\frac{C_0d(x, y)^{1 - \theta} \rho_x^{3\theta}}{|x|} + (1 + \eta'|x|^2)s_xH\right) \left(\frac{\rho_{fx}}{\rho_x}\right)^{3\theta} \left(\frac{d(x, y)}{d(fx, fy)}\right)^\theta \frac{1}{\rho_{fx}^{3\theta}}d(fx, fy)^\theta. \]

We get
\[\frac{C_0d(x, y)^{1 - \theta} \rho_x^{3\theta}}{|x|} + (1 + \eta'|x|^2)s_xH \leq C_0|x|^2 + (1 + \eta'|x|^2)s_xH \]
\[\leq (1 + \frac{3}{2}\eta'|x|^2)s_xH. \]

Also,
\[\left(\frac{\rho_{fx}}{\rho_x}\right)^{3\theta} \leq (1 + \eta'|x|^2)^{3\theta}, \left(\frac{d(x, y)}{d(fx, fy)}\right)^{\theta} \leq (1 + 4\eta'|x|^2)^{\theta}, (1 + 2\eta'|x|^2)s_x \leq s_{fx}. \]

Therefore, (6.2) follows from (6.1b).
Case III: \(x \in M \setminus (S_{\tau_0}^c \cup \Gamma \cup S_{\tau_0}^\omega). \)
This is the complement of the above two cases. In this case \(\rho_x = \rho_{fx} = r^* \) and \(s_x = s_{fx} = D^{2\eta}. \) By (6.3), (5.16) and (5.15),
\[|(F\sigma)(fx) - (F\sigma)(fy)| \leq \frac{C_0d(x, y)}{r^*} + \frac{s_xH}{r^*}d(x, y)^\theta \]
\[= \left(\frac{C_0d(x, y)^{1 - \theta} r^{3\theta} + s_xH}{r^{3\theta}}\right) \left(\frac{d(x, y)}{d(fx, fy)}\right)^\theta \frac{1}{r^{3\theta}}d(fx, fy)^\theta. \]
By the choice of H,
\[C_0d(x, y)^{1-\theta}r^{3\theta-1} + \zeta_x s_x H \leq C_0r^{+2} + \zeta_x s_x H \leq \frac{1 + \zeta_x}{2}s_x H = \frac{1 + \zeta_x}{2}s_{f,x} H. \]
Since $\frac{d(x, y)}{d(f, y)} \leq \|Df^{-1}\|_{B(x, \rho_x)}$, by (6.1c) we get (6.2).

\section*{7. Distortion estimates and proof of Theorem A}

The main work in this section is to prove bounded distortion estimates for small unstable curves away from p (Proposition 7.5). This result makes it possible to prove Theorem A through standard arguments. The absolute continuity of stable foliation is also proved (implied in Proposition 7.7) and is then applied to the proof of the corollary. In the end of the section we give a criterion distinguishing between the two cases in Theorem A (Proposition 7.8), which will be used in Part 2.

We fix a rectangle of the form $P = [W_u^s(p), W_s^u(p)]$, where $r \in (0, r^*)$, such that $fP \cup P \cup f^{-1}P \subset B(p, r^*)$.

\begin{lemma}
There exist constants $H^+ > 0$ and $\theta > 0$ such that if $\gamma \subset fP \cup P$ is a W^u-segment with $f^{-1}\gamma \subset P$ for $i = 1, \ldots, n - 1$, then for any $x, y \in \gamma$,
\[d(E^u(f^{-n}x), E^u(f^{-n}y)) \leq H^+ \frac{d(f^{-n}x, f^{-n}y)^\theta}{r^{3\theta}}. \]
\end{lemma}

\begin{proof}
We assume $\theta < \frac{1}{2}$. Take $H > 0$ satisfying Lemma 6.1 and
\[H \geq \frac{r^{3\theta}C_\beta}{1 - C_\alpha}, \]
where C_β and C_α are as in Lemma 5.4.

Suppose N is the minimal positive integer such that $f^{-N}\gamma \not\subset P$. By the same argument in the proof of Lemma 6.3, it is enough to show that for any $x, y \in f^{-N}\gamma$, $n = 1, \ldots, N$,
\[|\sigma^n(f^n x) - \sigma^n(f^n y)| \leq H^+ \frac{d(f^n x, f^n y)^\theta}{r^{3\theta}}. \]

Let $1 \leq n \leq N$. Fix $\beta \geq 0$ such that $\|Df_z\| \leq 1 + \beta \forall z \in B(p, r^*)$. Take $0 = n_0 < n_1 < \cdots < n_l < n_{l+1} = n$ such that $1 + 2\beta \leq \prod_{i=n_j}^{n_{j+1}-1} (1 + |f^i x|^2) \leq 1 + 4\beta$ $\forall j = 0, \ldots, l$. Then put $k_j = n_{j+1} - n_j$, $j = 0, \ldots, l$.

For $j = 0, \ldots, l$, define $s_j = \max\{1, \bar{s}_j\}$, and
\[\bar{s}_j = \begin{cases} 1, & f^{n_j} x \in S_r^s; \\ s_{j-1} C_\eta + \frac{r^{3\theta} C_\beta}{H}, & f^{n_j} x \in S_r^{c_s}; \\ s_{j-1}, & f^{n_j} x \in S_r^{c_u}. \end{cases} \]
where C_η and C_β are as in Lemma 5.4. By Lemma 5.5, there are at most m different n_j with $f^{n_j} x \in S_r^{c_s}$. So there are at most $m + 1$ different s_j, and therefore s_j are bounded.

The result of the lemma follows with $H^+ = \max_j \{ s_j H \}$ if we prove that for all $0 \leq j \leq l + 1$, (7.1)
\[|\sigma^n(f^n x) - \sigma^n(f^n y)| \leq s_j H \frac{d(f^n x, f^n y)^\theta}{r^{3\theta}}. \]
By Lemma 6.2, (7.1) is true for \(j = 0 \). Suppose it is true for some \(0 \leq j \leq l \).

Recall \(F_{f^j}^{k_j} \sigma^u(f^{n_j}x) = \sigma^u(f^{n_j+1}x) \). We have

\[
|\sigma^u(f^{n_j+1}x) - \sigma^u(f^{n_j+1}y)| = |F_{f^j}^{k_j} \sigma^u(f^{n_j}x) - F_{f^j}^{k_j} \sigma^u(f^{n_j}y)| \\
\leq |F_{f^j}^{k_j} \sigma^u(f^{n_j}y) - F_{f^j}^{k_j} \sigma^u(f^{n_j}y)| + |F_{f^j}^{k_j} \sigma^u(f^{n_j}x) - F_{f^j}^{k_j} \sigma^u(f^{n_j}y)|.
\]

By Lemma 4.6, \(d(f^jx, f^jy) \leq \eta C|f^jx|^3 \). So

\[
|f^{n_j}x|^{-1} \cdot d(f^{n_j}x, f^{n_j}y)^{1-\theta} \leq \eta^{1-\theta} C^{1-\theta} |f^{n_j}x|^{2-3\theta} \leq 1,
\]

for all \(f^{n_j}x \in B(p, r^*) \) if \(r^* \) is small enough.

Hence by Lemma 5.4.i), we get

\[
\left| F_{f^j}^{k_j} \sigma^u(f^{n_j}y) - F_{f^j}^{k_j} \sigma^u(f^{n_j}y) \right| \leq C_\beta |f^{n_j}x|^{-1} \cdot d(f^{n_j}x, f^{n_j}y) \leq C_\beta d(f^{n_j}x, f^{n_j}y)^\theta.
\]

To prove (7.1) for \(j + 1 \), we need use Lemma 5.4.ii). Consider two cases.

Case I: \(f^jx \in S^r_{\gamma^*} \cup S^s_{\gamma^*} \). Note that in this case, \(s_j = s_{j+1} \). By the choice of \(H \),

\[
|\sigma^u(f^{n_j+1}x) - \sigma^u(f^{n_j+1}y)| \leq C_\beta d(f^{n_j}x, f^{n_j}y)^\theta + s_j C_\kappa H \frac{r^3}{r^{3\theta}} d(f^{n_j}x, f^{n_j}y)^\theta
\]

(7.2) \(\leq (C_\beta + s_j C_\kappa H \frac{r^3}{r^{3\theta}}) d(f^{n_j}x, f^{n_j}y)^\theta \leq s_{j+1} H d(f^{n_j+1}x, f^{n_j+1}y)^\theta.
\]

Case II: \(f^jx \in S^s_{\gamma^*} \). By the definition of \(s_j \), we have

\[
|\sigma^u(f^{n_j+1}x) - \sigma^u(f^{n_j+1}y)| \leq C_\beta d(f^{n_j}x, f^{n_j}y)^\theta + s_j C_\kappa H \frac{r^3}{r^{3\theta}} d(f^{n_j}x, f^{n_j}y)^\theta
\]

(7.3) \(\leq (C_\beta + s_j C_\kappa H \frac{r^3}{r^{3\theta}}) d(f^{n_j}x, f^{n_j}y)^\theta \leq s_{j+1} H d(f^{n_j+1}x, f^{n_j+1}y)^\theta.
\]

Hence, we get (7.1) for \(j + 1 \) instead of \(j \). This completes the proof. \(\square \)

Lemma 7.2. There exist constants \(H^- > 0 \) and \(\theta > 0 \) such that if \(\gamma \in f^{-1}P \setminus P \) is a \(W^s \)-segment with \(f^i \gamma \subset P \) for \(i = 1, \ldots, n-1 \), then for any \(x, y \in \gamma \),

\[
d(E^u(f^n x), E^u(f^n y)) \leq H^- \frac{r^{-3\theta}}{r^{3\theta}} d(f^n x, f^n y)^\theta.
\]

Proof. The idea is the same as that in the Lemma 7.1. However, since \(d(f^{n_j}x, f^{n_j}y) \) is decreasing, the fact \(d(f^{n_j}x, f^{n_j}y)^\theta \leq d(f^{n_j+1}x, f^{n_j+1}y)^\theta \) cannot be used. We need some adjustment to obtain the last inequalities in (7.2) and (7.3).

By Corollary 2.3, we have

\[
\frac{d(f^{n_j}x, f^{n_j}y)}{d(f^{n_j+1}x, f^{n_j+1}y)} \leq \prod_{i=n_j}^{n_j+1} (1 + \eta |f^i x|^2) \leq \prod_{i=n_j}^{n_j+1} (1 + |f^i x|^2)^\eta \leq (1 + 4 \beta)^\eta.
\]

So if we take \(\theta \) small enough such that \((1 + 4 \beta)^\theta C_\kappa \leq 1 \), and then take \(H \geq \frac{r^{3\theta}}{1 - (1 + 4 \beta)^\theta} C_\beta \) and set \(s_j = \left(s_j - 1 C_\eta + \frac{r^{3\theta} C_\beta}{H} \right) \cdot (1 + 4 \beta)^\theta \), then the last step of (7.2) and (7.3) can go through. \(\square \)
Lemma 7.3. There exists constant $D > 0$ such that if $\gamma \subset fP \setminus P$ is a W^u-segment with $f^{-i}\gamma \subset P$ for $i = 1, \ldots, n - 1$, then $\forall x, y \in \gamma$,

$$
\sum_{i=0}^{n} d(f^{-i}x, f^{-i}y) \leq D.
$$

Proof. By Lemma 4.6,

$$
\sum_{i=0}^{n} d(f^{-i}x, f^{-i}y) \leq C \sum_{i=0}^{n} d(f^{-i}x, f^{-i+1}x).
$$

Choose $0 \leq n^u \leq n$ such that $f^{-i}x \in S^u_i$ if $0 \leq i < n^u$, $f^{-i}x \in S^s_i$ if $n^s < i \leq n$, and $f^i x \in S^s_i$, if $n^u \leq i \leq n^s$.

Note that if $z \in E^u_p$ with $|z|$ small, then $z \in S^u_n$ and therefore $d(z, fz)$ is close to $|fz| - |z|$. So we may assume that the sectors S^u were chosen in such a way that for all $z \in S^u_n$, $d(z, fz) = |fz| - |z| \leq K(|fz| - |z|)$ for some $K > 0$. Similarly, if $z \in S^s_n$, then $d(z, fz) = |fz| - |z| \leq K(|z| - |fz|)$. Thus,

$$
\sum_{i=0}^{n^u-1} d(f^{-i}x, f^{-i+1}x) \leq K \sum_{i=0}^{n^u-1} (|f^{-i+1}x| - |f^{-i}x|) \leq K f x \leq Kr^s.
$$

$$
\sum_{i=n^u+1}^{n} d(f^{-i}x, f^{-i+1}x) \leq K \sum_{i=n^u+1}^{n} (|f^{-i}x| - |f^{-i+1}x|) \leq K f^{-n} x \leq Kr^s.
$$

By Corollary 2.3 and Lemma 5.6,

$$
\sum_{i=n^u}^{n} d(f^{-i}x, f^{-i+1}x) \leq \eta \sum_{i=n^u}^{n^u} |f^{-i}x|^3 \leq 2 \eta r^s \log \left(\prod_{i=n^u}^{n^s} (1 + |f^{-i}x|^2) \right) \leq 2 \eta r^s \log D.
$$

So the result follows by putting $D \geq Cr^s(2\eta \log D + 2K)$.

For $y \in W^u(x)$, let $d^u(x, y)$ denote the distance between x and y measured along $W^u(x)$, and for $z \in W^s(x)$, let $d^s(x, z)$ be defined in an analogous way.

Lemma 7.4. There exists constant $I > 0$ such that if $\gamma \subset fP \setminus P$ is a W^u-segment with $f^{-i}\gamma \subset P$ for $i = 1, \ldots, n - 1$, then $\forall x, y \in \gamma$,

$$
\log \left| \frac{Df^{-n}[g, y]}{Df^{-n}[g, y]} \right| \leq I d^u(x, y)^9.
$$

Proof. Denote $x_i = f^{-i}x$, $y_i = f^{-i}y$ and $\gamma_i = f^{-i}\gamma$.

Choose $\beta \geq 0$ such that $|Df| \leq 1 + \beta \forall z \in B(p, r^s)$. Take $0 = n_0 < n_1 < \cdots < n_l = n$ such that $1 + 2\beta \leq \prod_{i=n_{j-1}+1}^{n_j} (1 + |x_i|^2) \leq 1 + 4\beta \forall j = 1, \ldots, l$. Then put $k_j = n_j - n_{j-1}$, $j = 1, \ldots, l$. The
Let $e(x) = e^n(x)$ be a unit vector in E^u_x. We have

$$
\frac{|Df_y^{-n}|_{E^u_y}}{|Df_x^{-n}|_{E^u_x}} = \frac{|Df_{y_n}^n e(x_n)|}{|Df_{x_n}^n e(y_n)|} \cdot \frac{|Df_{y_n}^n e(y_n)|}{|Df_{x_n}^n e(y_n)|}
$$

$$
= \prod_{j=1}^l \left(1 + \frac{|Df_{x_n}^{j} e(x_n_j) - Df_{y_n}^{j} e(y_n_j)|}{|Df_{y_n}^{j} e(y_n_j)|} \right) \cdot \prod_{i=1}^n \left(1 + \frac{|Df_{x_n} e(y_i) - Df_{y_n} e(y_i)|}{|Df_{y_n} e(y_i)|} \right)
$$

$$
\leq \prod_{j=1}^l \left(1 + \sum_{i=1}^n |Df_{x_n} e(y_i) - e(y_i)| \right) \cdot \prod_{i=1}^n \left(1 + |\sum_{i=1}^n d(x_i, y_i)| \right).
$$

By Corollary 2.3, $|Df_x| \leq 1 + 3\eta|x|e$. The choice of n_i implies that $\forall 1 \leq j \leq l$,

$$
|Df_{x_n}^{j}|_{E^u_{x_n}} \leq \prod_{i=n_{j-1}+1}^{n_j} \left(1 + 3\eta|x_i|^2 \right) \leq \prod_{i=n_{j-1}+1}^{n_j} \left(1 + |x_i|^2 \right)^{3\eta} \leq (1 + 4\beta)^{3\eta}.
$$

So by Lemma 7.1,

$$
(7.4) \quad \log \left| \frac{|Df_y^{-n}|_{E^u_y}}{|Df_x^{-n}|_{E^u_x}} \right| \leq (1 + 4\beta)^{3\eta} \sum_{j=1}^l \sum_{i=1}^n d(x_n_j, y_n_j)^0 + \|Df\|^n \sum_{i=1}^n d(x_i, y_i).
$$

For any $z_i \in \gamma_i$, $|z_i|^2 > \frac{|x_i|^2}{2}$. Hence for all $1 \leq j \leq l$,

$$
|Df_{x_n}^{j}|_{E^u_{x_n}} \geq \prod_{i=n_{j-1}+1}^{n_j} \left(1 + \kappa^u|z_i|^2 \right) \geq \prod_{i=n_{j-1}+1}^{n_j} \left(1 + |x_i|^2 \right)^{\frac{3\eta}{2}} \geq (1 + 2\beta)^{\frac{3\eta}{2}}.
$$

This means that $d^n(x_n_j, y_n_j)$ and therefore $d(x_n_j, y_n_j)$ decrease exponentially as j increases. Thus the first sum in (7.4) is bounded. By Lemma 7.4, the second sum is also bounded. Now it is easy to conclude that

$$
\log \left| \frac{|Df_y^{-n}|_{E^u_y}}{|Df_x^{-n}|_{E^u_x}} \right| \leq I_0
$$

for some $I_0 > 0$ independent of the choice of γ, x and y.

Take $\tilde{\gamma} \supset \gamma$ in such a way that $\tilde{\gamma} \subset fP\setminus P$ with maximal length. The arguments above tell us that

$$
d^n(x_i, y_i) \leq e^{2\kappa^u \frac{d^n(x, \bar{y})}{d^n(\bar{x}, \tilde{y})}} d^n(x, y),
$$

where \bar{x} and \bar{y} are the extreme points of γ_i. Note that $d(x, y)$ and $d^n(x, y)$ are equivalent for any $y \in W^u_y(x)$ and that $d^n(x, \tilde{y})$ is bounded away from 0 for any given P. Using (7.4) again we get the result.

Proposition 7.5. There exist constants $\delta > 0$ and $J_u > 1$, depending on P, such that if γ is a W^u-segment with $l(\gamma) \leq \delta$ and $\gamma \cap P = \emptyset$, then $\forall x, y \in \gamma$ and $n > 0$,

$$
J_u^{-1} \leq \left| \frac{|Df_y^{-n}|_{E^u_y}}{|Df_x^{-n}|_{E^u_x}} \right| \leq J_u.
$$

Proof. Use Lemma 7.4 and the fact that $Df_x|_{E^u_x}$ is uniformly expanding outside P. See the proof in [HY], Proposition 3.1 for more details.
Lemma 7.6. There exist constants \(\delta > 0 \) and \(J_s > 1 \), depending on \(P \), such that if \(\gamma \) is a \(W^s \)-segment with \(\text{diam}(\gamma) \leq \delta \) and \(\gamma \cap P = \emptyset \), then \(\forall x, z \in \gamma \) and \(n > 0 \),

\[
J_s^{-1} \leq \frac{|Df^n_{x}|_{E^s_x}|}{|Df^n_{z}|_{E^s_z}|} \leq J_s.
\]

Proof. By using Lemma 7.2, we can prove a result parallel to Lemma 7.4. The rest is the same as in the proof of the previous proposition.

Proof of Theorem A. Take a rectangle \(P \) as in [HY], Lemma 5.1. Define the first return map \(g : M \setminus P \to M \setminus P \). Using the same proof as in [HY], Lemma 5.2, we know that there exists a \(g \)-invariant Borel probability measure \(\tilde{\mu} \) with the property that \(\tilde{\mu} \) has absolutely continuous conditional measures on the unstable manifolds of \(f \). By pushing forward, we can extend \(\tilde{\mu} \) to an \(f \)-invariant measure on \(M \). That is, let

\[
(7.5) \quad \mu = \sum_{i=0}^{\infty} f_i^*(\tilde{\mu}|_{Q_i}),
\]

where \(f_i \tilde{\mu} = \tilde{\mu} \circ f^{-1} \). \(Q_0 = M \setminus P \) and \(Q_i = \{ x \in M \setminus P : f^{j+1}x \in P \} \forall i \geq 1 \). It is easy to see that \(\mu \) also has absolutely continuous conditional measures on the unstable manifolds of \(f \). So if the series in (7.5) converges, then \(\mu M \) is finite, and after normalization we get an SBR measure of \(f \). Otherwise, \(\mu \) is a \(\sigma \)-finite measure on \(M \) and therefore is an infinite SBR measure of \(f \).

Let \(\Sigma_1 \) and \(\Sigma_2 \) be two \(W^s \)-leaves, and let \(\iota : \Sigma_1 \to \Sigma_2 \) be a continuous map defined by sliding along the \(W^s \)-leaves, i.e., for \(x \in \Sigma_1 \), \(\iota(x) \in \Sigma_2 \cap W^s(x) \).

Proposition 7.7. The \(W^s \)-foliation is locally Lipschitz away from \(p \). More precisely, for any rectangle \(P = [W^s_v(p), W^s_u(p)] \), there exist constants \(L > 0 \) and \(\varepsilon > 0 \) such that \(\forall x \in M \setminus P \) with \([W^s_v(x), W^s_u(x)] \cap P = \emptyset \), and \(\forall z \in W^s_v(x) \), \(\iota : W^s_u(x) \to W^s(z) \) is Lipschitz with Lipschitz constant \(L \).

Proof. Let \(\gamma \) be an arbitrarily short segment in \(W^s_v(x) \). We will prove \(l(\gamma) \leq L \cdot l(\gamma) \) for some \(L > 0 \) independent of \(\gamma \), where \(l(\gamma) \) denotes the length of \(\gamma \).

Denote by \(\gamma^s \) the stable curve connecting \(x_1 \in \gamma \) and \(x \in W^s_v(x_1) \). Take \(n > 0 \) such that \(l(f^n(\gamma^s)) \leq \min\{l(f^n(\gamma)), l(f^n(\gamma))\} \). Without loss generality we assume the lengths of \(f^n(\gamma) \cap P \) and \(f^n(\gamma^s) \cap P \) are 0 and \(l(f^n(\gamma^s)), l(f^n(\gamma)) \leq \delta \), where \(\delta \) is as in Proposition 7.5 and Lemma 7.6. This is possible because, otherwise, we can take a shorter \(\gamma \) and larger \(n \).

By the continuity of \(E^u_x \) and \(E^u_z \), there is an \(L' > 0 \) such that \(l(f^n(\gamma)) \leq L' \cdot l(f^n(\gamma)) \). The distortion estimates in Proposition 7.5 and Lemma 7.6 imply that

\[
l(\gamma) \leq L'J_sJ_u \cdot l(\gamma).
\]

Proof of the Corollary of Theorem A. The Lipschitzness of the \(W^s \)-foliation is given by Proposition 7.7. This enables us to follow the proof of Lemma 5.3 and Theorem B in [HY] to get the desired results.

The following facts will be used in the proof of Theorem B in the next part.
Take $p^+, p^- \in W^u_r(p)$ in such a way that p^+ and p^- are in different components of $W^u_r(p) \setminus \{p\}$, and take $q^+, q^- \in W^s_r(p)$ similarly. We have $[q, f^{-i}p^+] \in W^u_r(q)$ and $\lim_{n \to \infty} [q, f^{-i}p^+] = q$ for $q = q^+$ or q^-. Put

\[(7.6) \quad \Delta^{++} = \sum_{n=1}^{\infty} d^n(q^+, [q^+, f^{-n}p^+]) \quad \text{and} \quad \Delta = \Delta^{++} + \Delta^+ + \Delta^- + \Delta^{--},\]

where $\Delta^+, \Delta^-,$ and Δ^{--} are understood in a similar way as Δ^{++}. It is clear whether $\Delta < \infty$ is independent of the choice of p^\pm. Since W^s-foliation is Lipschitz away from p, whether $\Delta < \infty$ is also independent of the choice of q^\pm.

Proposition 7.8. If $\Delta < \infty$, then f admits an SBR measure. Otherwise, f admits an infinite SBR measure.

Proof. We may assume p^+ and q^\pm are in the boundary of P. Denote by P^{++} the quarter of P bounded by $W^u_r(p)$, $W^s_r(p)$, $W^u_r(q^+)$ and $W^s_r(p^+)$. It is enough to show that $\mu P^{++} < \infty$ if and only if $\Delta^{++} < \infty$.

Put $Q_i^{++} = \{x \in Q : f^{ix} \in P\}$. By (7.5) $\mu P^{++} = \sum_{i=1}^{\infty} \mu Q_i^{++}$. Denote $q_i = [q^+, f^{-i}p^+]$. Clearly, Q_i^{++} is a rectangle whose unstable direction is bounded by $W^u_r(q^+)$ and $W^s_r(q_i)$. The distortion estimates imply that the densities of the conditional measures of μ on unstable manifolds are bounded away from 0 and ∞ (see e.g. the proof of [HY], Lemma 5.2). So, μQ_i^{++} is proportional to $d (q^+, q_i)$, i.e. there exists $J_u \geq 1$ such that $J_u^{-1} d (q^+, q_i) \leq \mu Q_i^{++} \leq J_u d (q^+, q_i)$ for all $i \geq 1$. Now the result becomes clear. \qed

PART 2: PROOF OF THEOREM B

In this part we assume that Assumption A holds. Therefore f can be expressed as (1.3) and (1.4) in some neighborhood $B(p, r)$ of the fixed point p.

Take $z = (x, y) \in B(p, r)$ and denote $\bar{z} = (\bar{x}, \bar{y}) = [z, fz]$. To determine whether the series in (7.6) converges, we should estimate the order of $\bar{x} - x$ as $x \to 0$. Since both \bar{z} and fz are in $W^s_r(fz)$, we need to know the slope of $W^s_r(fz)$. Let v^s_x be a real number or infinity such that $(v^s_x, 1)$ is a tangent vector of $W^s_r(z)$. Most of the work in this part is estimating v^s_x for z near the y-axis.

8. Preliminaries

We assume that v^s_x has the form $-\rho^x \frac{\partial}{\partial x}$, where $\rho = \rho(x, y)$. Results in Lemma 8.3 and Proposition 8.4 imply that $\rho(x, y) = \frac{\partial \phi}{\partial x} + \hat{\rho}(y) + R_y(x, y)$, where $\hat{\rho}(y)$ is determined by equations (8.6) and (8.7) in Proposition 8.4, and $R_y(x, y) \to 0$ as $x \to 0$. These facts allow us to estimate the bounds of $\rho(x, y)$ in §9 and §10.

By (1.3) we know that for $z = (x, y) \in B(p, r)$, \begin{equation}
Df_z = \begin{pmatrix}
1 + \phi(x, y) + x\phi_x(x, y) & x\phi_y(x, y) \\
-y\psi(x, y) & 1 - \psi(x, y) - y\psi_y(x, y)
\end{pmatrix}
\end{equation}
where ϕ_x denotes the partial derivative of ϕ with respect to x, etc. The nondegeneracy condition (1.1) implies that on $B(p, r)$, $\phi(x, y) + x\phi_x(x, y) \geq \kappa^u[(x, y)]^2$ and $\psi(x, y) + y\psi_y(x, y) \geq \kappa^s[(x, y)]^2$. In other words, for all $z = (x, y) \in B(p, r)$, \begin{equation}
3a_0x^2 + 2a_1xy + a_2y^2 \geq \kappa^u(x^2 + y^2),
\end{equation}
\begin{equation}
b_0x^2 + 2b_1xy + 3b_2y^2 \geq \kappa^s(x^2 + y^2).
\end{equation}
Therefore
\begin{equation}
(8.3) \quad a_0, a_2, b_0, b_2 > 0.
\end{equation}

In this part we always assume that \(z = (x, y) \in B(p, r) \). We also assume that \(r \) is small enough such that all higher order terms can be controlled by corresponding lower order terms. We will denote \(z_n = (x_n, y_n) = f^n z, \phi_n = \phi(x_n, y_n), \psi_n = \psi(x_n, y_n), \) etc. Without loss generality we only consider the case that \(z \) is in the first quarter. So we have \(x_n, y_n \geq 0 \) except for the opposite statement. Also we may assume
\begin{equation}
(8.4) \quad -1 \leq v^*_z \leq 1 \quad \forall z \in B(p, r).
\end{equation}

Otherwise, we can rescale the \(x \)-axis and \(y \)-axis by constant factors. This does not change the conditions of Theorem B because by (1.3) and (1.4) the ratio of \(a_i/b_i \) and the signs of \(a_i \) and \(b_i, \) \(i = 0, 1, 2, \) remain the same.

Lemma 8.1. Let \(\{ t_n \} \) be a sequence of positive numbers, and let \(C > 0 \) and \(\alpha > 0 \).

i) If \(\forall n \geq 1, t_{n-1} = t_n + C t_{n+\alpha}, \) then there exist \(D > 0, k_0 \geq 1 \) such that
\[t_n \leq D(n - k_0)^{-\frac{1}{\alpha}} \quad \text{for all large} \ n. \]

Therefore \(\sum_{n=1}^{\infty} t_n \) converges as \(\alpha \leq 1. \)

ii) If \(\forall n \geq 1, t_{n-1} \leq t_n + C t_{n+\alpha}, \) then there exist \(D > 0, k_0 \geq 1 \) such that
\[t_n \geq D(n + k_0)^{-\frac{1}{\alpha}} \quad \text{for all large} \ n. \]

Therefore \(\sum_{n=1}^{\infty} t_n \) diverges as \(\alpha \geq 1. \)

Proof.

i) Take \(D > 0 \) such that \(\alpha CD^\alpha \geq 2. \) Suppose \(t_n \geq D k^{-\frac{1}{\alpha}} \) for some integer \(k > 1. \) Then
\[t_{n-1} \geq D k^{-\frac{1}{\alpha}} (1 + C \cdot (D k^{-\frac{1}{\alpha}})^{\alpha}) = D k^{-\frac{1}{\alpha}} (1 + CD^\alpha k^{-1}). \]

It is easy to see that if \(k \) is large enough, then \((1 - k^{-1}) (1 + CD^\alpha k^{-1}) > 1 \) or \(k^{-\frac{1}{\alpha}} (1 + CD^\alpha k^{-1}) = (k - 1)^{-\frac{1}{\alpha}}. \) So \(t_{n-1} \geq D(k - 1)^{-\frac{1}{\alpha}}. \)

The arguments show that if \(t_{n-1} \leq D(n - k_0 - 1)^{-\frac{1}{\alpha}} \) for some \(k_0 \geq 1, \) then \(t_n \leq D(n - k_0)^{-\frac{1}{\alpha}}. \)

ii) The proof is similar. \(\square \)

Lemma 8.2. Let \(z = (0, y) \) and \(z_n = (0, y_n) = f^n z. \) Then \(\sum_{n=0}^{\infty} y_n^3 \leq \frac{2}{b^2} y_0 \) and the convergence is uniform for all \(y_0 \in [0, r]. \)

Proof. Since \(y_{n+1} = y_n - y_n \psi(0, y_n), \) (1.3) and (1.4) imply \(y_n - y_{n+1} = y_n \psi(0, y_n) \geq \frac{b_2}{b^2} y_n^3. \) So
\[\sum_{n=0}^{\infty} y_n^3 \leq \frac{2}{b^2} \sum_{n=0}^{\infty} (y_n - y_{n+1}) = \frac{2}{b^2} y. \]

The uniformity is clear. \(\square \)

Denote \(z_1 = f z \) and \(\rho_1 = \rho(z_1). \) Note that \(\rho_1 = \rho(x(1 + \phi), y(1 - \psi)) \) is also a function of \(z = (x, y). \) Let
\begin{equation}
(8.5) \quad \Delta_\rho(x, y) = (\rho - \rho_1)(1 + \phi)(1 - \psi) + \rho_1 y(1 + \phi)\psi_y - y(1 - \psi)\phi_y
\end{equation}
\[-\rho_1 \rho x(1 + \phi)\psi_x + \rho x(1 - \psi)\phi_x. \]

Lemma 8.3. If \(v^*_z \leq -\rho(z) \frac{x}{y} \) and \(0 \leq \Delta_\rho(x, y), \) then \(v^*_z \leq -\rho(z_1) \frac{x_1}{y_1}. \) The result also holds if all \(\leq \) are replaced by \(\geq \).
Proof. Since the map \(v \to \frac{(1 + c_{11})v + c_{12}}{c_{21}v + (1 - c_{12})} \) is increasing as \(c_{ij} \) small, by (8.1),
\[
 r^2_{z_1} \leq \frac{-(1 + \phi + x\phi_x) \cdot \rho x + x\phi_y \cdot y}{-y\psi_x \cdot \rho x + (-\psi - y\psi_y) \cdot y}.
\]
To get the result, use the fact that \(0 \leq \Delta_p(x, y) \) is equivalent to
\[
 -(1 + \phi + x\phi_x) \cdot \rho x + x\phi_y \cdot y
 - y\psi_x \cdot \rho x + (-\psi - y\psi_y) \cdot y \leq -r_1(1 + \phi) \frac{y(1 - \psi)}{y(1 - \psi)}.
\]

The next proposition plays a key role for the proof of Theorem B.

Proposition 8.4. There exist a Lipschitz function \(\tilde{\rho} \) on \([0, r]\) with \(\tilde{\rho}(0) = 0 \) satisfying the following two equations:
\[
 \Delta_{\tilde{\rho}}(0, y) = (\tilde{\rho}(y) - \tilde{\rho}(y_1 \psi(0))) (1 + \phi) (1 - \psi)
 + \left(\frac{a_2}{b_2} + \tilde{\rho}(y_1 \psi(0)) \right) y(1 + \phi) \psi_y - y(1 - \psi) \phi_y = 0
\]
and
\[
 (8.7) \quad b_2 \log(1 + \phi) + a_2 \log(1 - \psi) - b_2 \int_{y_1 \psi(0)}^{y} \frac{\tilde{\rho}(t)}{t} dt = 0,
\]
where \(\phi = \phi(0, y), \psi = \psi(0, y) \) and \(y_1 \psi(0) = y(1 - \psi(0, y)) \).

Proof. Denote \(z = (0, y), z_n = f^n z = (0, y_n), \phi_n = \phi(0, y_n), \) etc. So \(y_1 \psi(0) \) can be written as \(y_1 \). Define \(\tilde{\rho}(0) = 0 \) and for \(y \neq 0 \) define
\[
 (8.8) \quad \tilde{\rho}(y) = \sum_{n=0}^{\infty} \frac{b_2 y_n(1 - \psi_n) \phi_y(0, y_n) - a_2 y_n(1 + \phi_n) \psi_y(0, y_n)}{b_2(1 + \phi_n)(1 - \psi_n)} \prod_{k=0}^{n-1} \left(\frac{1 - y_k \psi_y(0, y_k)}{1 - \psi_k} \right).
\]
By (1.4) \(b_2 y_n \phi_y(0, y_n) - a_2 y_n \psi_y(0, y_n) = O(y_n^3) \). The product in each term in (8.8) is less than 1 because \(y \psi_y > 0 \). So by Lemma 8.2,
\[
 (8.9) \quad |\tilde{\rho}(y)| \leq L_{\tilde{\rho}} y
\]
for some \(L_{\tilde{\rho}} > 0 \).

It is easy to check
\[
 \tilde{\rho}(y_1) = \sum_{n=1}^{\infty} \frac{b_2 y_n(1 - \psi_n) \phi_y(0, y_n) - a_2 y_n(1 + \phi_n) \psi_y(0, y_n)}{b_2(1 + \phi_n)(1 - \psi_n)} \prod_{k=1}^{n-1} \left(\frac{1 - y_k \psi_y(0, y_k)}{1 - \psi_k} \right).
\]
Therefore,
\[
 \tilde{\rho}(y) = \left(\frac{1 - y \psi_y(0, y)}{1 - \psi} \right) \tilde{\rho}(y_1) + \frac{b_2 y(1 - \psi) \phi_y(0, y) - a_2 y(1 + \phi) \psi_y(0, y)}{b_2(1 + \phi)(1 - \psi)}.
\]
Multiplying by \((1 + \phi)(1 - \psi) \), we get (8.6).
Note \(y_1 = y(1 - \psi) \). Differentiating the left-hand side of (8.7) with respect to \(y \), we get
\[
 \frac{b_2 \phi_y}{1 + \phi} - \frac{a_2 \psi_y}{1 - \psi} + b_2 \frac{\tilde{\rho}(y)}{y} - b_2 \frac{\tilde{\rho}(y_1)}{y(1 - \psi)} (1 - \psi - y \psi_y).
\]
By (8.6) it is equal to 0. This means that the left-hand side of (8.7) is a constant. Since \(\tilde{\rho}(y), \phi(0, y), \psi(0, y) \to 0 \) as \(y \to 0 \), this constant must be zero.

Now we prove Lipschitzness of \(\tilde{\rho} \). We will prove that the derivative of \(\tilde{\rho} \) is bounded by a constant for \(y \neq 0 \). This combined with (8.9) implies Lipschitzness of \(\tilde{\rho} \) on \([0, r]\).

By (1.4) we can write
\[
\frac{b_{2}y_{n}(1 - \psi_{n})\phi_{n}(0, y_{n}) - a_{2}y_{n}(1 + \phi_{n})\psi_{n}(0, y_{n})}{b_{2}(1 + \phi_{n})(1 - \psi_{n})} = C'y_{n}^{3} + o(y_{n}^{3})
\]
and
\[
1 - \frac{y_{k}\psi_{n}(0, y_{k})}{1 - \psi_{k}} = (1 - \psi_{k})^{2} \left(1 - \frac{\psi_{k} - y_{k}\psi_{n}(0, y_{k})}{1 - \psi_{k}}\right) = (1 - \psi_{k})^{2} (1 + C''y_{k}^{3} + o(y_{k}^{3}))
\]
for some constants \(C' \) and \(C'' \). Clearly, \(\prod_{k=0}^{n-1} (1 - \psi_{k}) = \frac{y_{n}}{y} \). Hence we can write (8.8) as
\[
\tilde{\rho}(y) = \sum_{n=0}^{\infty} \left[C'y_{n}^{3} + o(y_{n}^{3})\right] \prod_{k=0}^{n-1} (1 - \psi_{k})^{2} (1 + C''y_{k}^{3} + o(y_{k}^{3}))
\]
\[
= \sum_{n=0}^{\infty} \frac{C' y_{n}^{5} + o(y_{n}^{5})}{y^{2}} \prod_{k=0}^{n-1} (1 + C''y_{k}^{3} + o(y_{k}^{3})).
\]

Since \(\frac{dy_{k+1}}{dy_{k}} = 1 - \psi_{k} - y_{k}\psi_{n}(0, y_{k}) \leq 1 - \psi_{k} = \frac{y_{k+1} - y_{k}}{y_{k}} \), we get \(\frac{dy_{k}}{dy} \leq \frac{y_{k+1}}{y_{k}} \leq 1 \).

Thus,
\[
\left| \frac{d}{dy} \frac{C'y_{n}^{5} + o(y_{n}^{5})}{y^{2}} \right| \leq C_{1}\frac{y_{n}^{5}}{y^{3}} \leq C_{1}\frac{y_{n}^{3}}{y}
\]
for some \(C_{1} > 0 \). By Lemma 8.2, \(\prod_{k=0}^{n-1} (1 + C''y_{k}^{3} + o(y_{k}^{3})) \leq C_{2} \). Hence,
\[
\left| \sum_{n=0}^{\infty} \frac{dy_{k}}{dy} \prod_{k=0}^{n-1} (1 + C''y_{k}^{3} + o(y_{k}^{3})) \right|
\]
\[
= \sum_{k=0}^{n-1} \frac{3C''y_{k}^{2} + o(y_{k}^{2})}{1 + C''y_{k}^{3} + o(y_{k}^{3})} \cdot \frac{y_{k}}{y} \cdot \prod_{k=0}^{n-1} (1 + C''y_{k}^{3} + o(y_{k}^{3}))
\]
\[
\leq \sum_{k=0}^{n-1} \frac{4C''y_{k}^{2} \cdot \frac{y_{k}}{y} \cdot C_{2}}{y} \sum_{k=0}^{n-1} y_{k}^{3} \leq C_{3}.
\]

From these inequalities we get
\[
\sum_{n=0}^{\infty} \frac{dy_{k}}{dy} \left[\frac{C'y_{n}^{5} + o(y_{n}^{5})}{y^{2}} \prod_{k=0}^{n-1} (1 + C''y_{k}^{3} + o(y_{k}^{3}))\right] \leq \sum_{n=0}^{\infty} \left(\frac{y_{n}^{3}}{y} \cdot C_{2} + 2C'y_{n}^{3} \cdot C_{3}\right).
\]

Now it is easy to see by Lemma 8.2 that the convergence is uniform. Thus, we know that \(\frac{d\tilde{\rho}(y)}{dy} \) is bounded by \(\frac{2}{b_{2}}(C_{1}C_{2} + 2C'y_{n}^{3}r) \) for all \(y \in (0, r] \). This proves the result. \(\square \)
9. Existence of SBR measures

In this section we prove the first part of Theorem B. We estimate the upper bounds of $|v^n|$ in Lemma 9.1 and then show that the general terms of the series in (7.6) decrease at a rate faster than $n^{-\frac{1}{3}}$ (implied in Lemma 9.2).

Lemma 9.1. Suppose $a_1 a_2 > 2b_2$, $a_1 = 0 = b_1$ and $a_0 b_2 - a_2 b_0 > 0$. Then for any point $q = (0,y_q)$ with $y_q > 0$ small, there exists $\epsilon > 0$ such that $\forall z_0 = (x_0, y_0) \in W^u_x(q)$ with $x_0 > 0$,

$$v^s_{z_0} \geq -(\frac{a_2}{b_2} + \hat{\rho}(y_0))(1 - x^\alpha)\frac{x_0}{y_0}.$$ \hfill (9.1)

Proof. For each $z_0 = (x_0, y_0) \in W^u_x(q)$, $z_n = (x_n, y_n) = f^n(z_0)$, we denote

$$\rho_i = \rho(z_i) = (\frac{a_2}{b_2} + \hat{\rho}(y))(1 - x^\alpha) \quad \forall i \geq 0.$$ \hfill (9.2)

We show that for $y_q > 0$ small, there exists $\epsilon > 0$ such that $\forall z_0 = (x_0, y_0) \in W^u_x(q)$ with $x_0 > 0$,

$$v^s_{z_i} \leq -\rho_i \frac{x_i}{y_i} \quad \text{and} \quad \rho_i x_i \leq y_i$$

imply

$$v^s_{z_{i+1}} \leq -\rho_{i+1} \frac{x_{i+1}}{y_{i+1}}.$$

This proves the result of the lemma. In fact, if (9.1) is not true, then for some large n, $\rho_n x_n \geq y_n$ and therefore $v^s_{z_n} \leq -\rho_n \frac{x_n}{y_n} < -1$, contradicting to (8.4).

By Lemma 8.3, it is enough to show for such $z_i = (x_i, y_i)$,

$$\Delta_{\rho_i}(x_i, y_i) = (\rho_i - \rho_{i+1})(1 + \psi_i)(1 - \psi_i)$$
$$+ \rho_{i+1} y_i (1 + \psi_i) \psi_i (x_i, y_i) - y_i (1 - \psi_i) \phi_y (x_i, y_i)$$
$$- \rho_i x_i (1 + \psi_i) \psi_i (x_i, y_i) + \rho_i x_i (1 - \psi_i) \phi_x (x_i, y_i) \geq 0. \hfill (9.3)$$

Note that $x^n_{i+1} - x^n_i = x^\alpha (1 + \rho_i)^\alpha - x^\alpha_i = \alpha x^\alpha_i (\phi_i + O(\phi^2_i)) = \alpha a_2 x^\alpha_i y^2_i + x^\alpha_i O(x^2_i + y^2_i)$. By (9.2) we have

$$\rho_i - \rho_{i+1} = (\hat{\rho}(y_i) - \hat{\rho}(y_{i+1}))(1 - x^\alpha_{i+1}) + \left(\frac{a_2}{b_2} + \tilde{\rho}(y_i)\right)(x^\alpha_{i+1} - x^\alpha_i)$$
$$= \hat{\rho}(y_i) - \hat{\rho}(y_{i+1}) + \frac{a_2}{b_2} \alpha a_2 x^\alpha_i y^2_i + x^\alpha_i O(x^2_i + y^2_i).$$

Since $a_1 = 0 = b_1$, by (1.4) we see that $\phi_y(x,y) = \phi_y(0,y) + x O(x+y)$, $\psi_y(x,y) = \psi_y(0,y) + x O(x+y) = 2b_2 y + O(x^2 + y^2)$. So

$$\rho_{i+1} y_i \psi_y(x_i, y_i) = \left(\frac{a_2}{b_2} + \tilde{\rho}(y_{i+1})\right) y_i (\psi_y(0,y_i) + x_i O(x_i+y_i))$$
$$- \frac{a_2}{b_2} x^\alpha_i (2b_2 y^2_i + y_i O(x^2_i + y^2_i)),$$

and

$$y_i \phi_y(x_i, y_i) = y_i (\phi_y(0,y_i) + x_i O(x_i+y_i)).$$
By Lemma 8.4,
\[
(\hat{\rho}(y_i) - \hat{\rho}(y_i^{(0)}))(1 + \phi_i)(1 - \psi_i) \\
+ \left(\frac{a_2}{b_2} + \hat{\rho}(y_i^{(0)})\right)y_i(1 + \phi_i)\psi(y(x_i, y_i) - y_i(1 - \psi_i)\phi(y(x_i, y_i) = 0,
\]
where \(y_i^{(0)} = y_i(1 - \psi(0, y_i))\). Note that \(y_{i+1}^0 = y_i(1 - \psi(x_i, y_i))\). So both \(y_{i+1} - y_{i+1}^0\) and \(\hat{\rho}(y_{i+1}) - \hat{\rho}(y_{i+1}^0)\) have order \(O(x_i^2 y_i)\). Hence
\[
(\rho_i - \rho_i^{(1)})(1 + \phi_i)(1 - \psi_i) + \rho_i^{(1)}y_i(1 + \phi_i)\psi(y(x_i, y_i) - y_i(1 - \psi_i)\phi(y(x_i, y_i) = \frac{a_2}{b_2}(a a_2 - 2b_2)x_i^a y_i^2 O(x_i^2 + y_i^3) + y_i y_i O(x_i + y_i).
\]
Also, since \(\psi(x, y) = 2a_0 x + O(x^2 + y^2)\) and \(\psi(x, y) = 2b_0 x + O(x^2 + y^2)\),
\[
-\rho_i \rho_i^{(1)} x_i \psi(x_i, y_i) + \rho_i x_i \phi(x_i, y_i) = 2\rho_i (-\rho_i^{(1)} b_0 + a_0) x_i^2 + x_i O(x_i^2 + y_i^2).
\]
By (9.2), we have
\[
-\rho_i^{(1)} b_0 + a_0 = \frac{a_0 b_2 - a_2 b_0}{b_2} + \frac{a_2}{b_2} x_i^{a + O(y_i^{(1)})}.
\]
So
\[
-\rho_i \rho_i^{(1)} x_i \psi(x_i, y_i) + \rho_i x_i \phi(x_i, y_i) = 2\rho_i \left(\frac{a_0 b_2 - a_2 b_0}{b_2} + \frac{a_2}{b_2} x_i^{a + 1}\right) x_i^2 + x_i O(x_i^2 + y_i^2).
\]
Therefore, (9.3) can be written as
\[
\Delta_{\rho_i}(x_i, y_i) = \frac{a_2}{b_2}(a a_2 - 2b_2)x_i^a (y_i^2 + O(x_i^2 + y_i^3) + 2\rho_i \left(\frac{a_0 b_2 - a_2 b_0}{b_2} + \frac{a_2}{b_2} x_i^{a + 1}\right) x_i^2 + x_i O(x_i^2 + y_i^2).
\]
Now the assumptions \(a_2 > 4b_2\) and \(a_0 b_2 - a_2 b_0 > 0\) imply \(\Delta_{\rho_i}(x_i, y_i) \geq 0\) if \(y_0\) and \(x_0\) are small. \(\square\)

Lemma 9.2. Let \(z_0 = (x_0, y_0)\) with \(x_0, y_0 > 0\). If for all \(z = (x, y)\) in the stable curve that joins \(z_0\) and \(z_1\),
\[
\nu_z^c \geq -\left(\frac{a_2}{b_2} + \hat{\rho}(y)\right)(1 - x^a) \frac{x}{y},
\]
then
\[
\bar{x}_0 \geq x_0 + Cx_0^{1 + a}
\]
for some constant \(C = C(y_q) > 0\).

Proof. We regard \(W^c(x)\) as the graph of a function \(x = x(y)\). Then (9.6) gives
\[
\frac{dx}{dy} \geq -\left(\frac{a_2}{b_2} + \hat{\rho}(y)\right)(1 - x^a) \frac{x}{y},
\]
i.e.,
\[
\frac{dx}{x(1 - x^a)} + \left(\frac{a_2}{b_2} + \hat{\rho}(y)\right) \frac{dy}{y} \geq 0.
\]
Integrating it from $z_1 = (x_1, y_1)$ to $z_0 = (\bar{x}_0, \bar{y}_0)$, we get
\[
\log \frac{\bar{x}_0}{x_1} - \frac{1}{\alpha} \log \frac{1 - x_0^\alpha}{1 - x_1^\alpha} + \frac{a_2}{b_2} \log \frac{\bar{y}_0}{y_1} + \int_{y_1}^{\bar{y}_0} \frac{\hat{\rho}(y)}{y} \, dy \geq 0.
\]

From now on we omit subscript 0 in the rest of proof. This inequality implies
\[
\bar{x} \geq x_1 \left(\frac{1 - \bar{x}^\alpha}{1 - x_1^\alpha} \right) \left(\frac{y_1}{\bar{y}} \right)^{\frac{a_2}{b_2}} \exp \left[- \int_{y_1}^{\bar{y}} \frac{\hat{\rho}(y)}{y} \, dy \right].
\]

Since $x_1 = x(1 + \phi)$ and $y_1 = y(1 - \psi)$, we can write
\[
\frac{\bar{x}}{x} \geq (1 + \phi)(1 - \psi)^{\frac{a_2}{b_2}} \left(\frac{1 - \bar{x}^\alpha}{1 - x_1^\alpha} \right) \left(\frac{y_1}{\bar{y}} \right)^{\frac{a_2}{b_2}} \exp \left[- \int_{y_1}^{\bar{y}} \frac{\hat{\rho}(y)}{y} \, dy \right]
\]
\[
= \exp \left[\frac{b_2}{b_2} \left(\frac{1}{b_2} \log(1 + \phi) + a_2 \log(1 - \psi) - b_2 \int_{y_1}^{\bar{y}} \frac{\hat{\rho}(y)}{y} \, dy \right) \right]
\]
\[
\times \left(\frac{1 - \bar{x}^\alpha}{1 - x_1^\alpha} \right) \left(\frac{y_1}{\bar{y}} \right)^{\frac{a_2}{b_2}} \exp \left[\int_{y_1}^{\bar{y}} \frac{\hat{\rho}(y)}{y} \, dy \right].
\]

The first factor on the right-side is of the form $1 + O(x)$, because by Lemma 8.4 and (8.9),
\[
b_2 \log(1 + \phi) + a_2 \log(1 - \psi) - b_2 \int_{y_1}^{\bar{y}} \frac{\hat{\rho}(y)}{y} \, dy = b_2 \int_{y_1(0)}^{\bar{y}} \frac{\hat{\rho}(y)}{y} \, dy = O(x),
\]
where $y_1(0) = y(1 - \psi(0, y))$.

Note that $x_1 = x + x\phi$. We have
\[
\frac{1 - \bar{x}^\alpha}{1 - x_1^\alpha} = 1 + \frac{x\alpha(1 + \phi)\alpha - \bar{x}^\alpha}{1 - x_1^\alpha} = 1 + \frac{x\alpha + ax\phi - \bar{x}^\alpha + O(\phi^2)}{1 - x_1^\alpha}.
\]

Without loss of generality, we may assume $\bar{x}^\alpha - x^\alpha \leq \frac{1}{2} x^\alpha \phi$; otherwise, we have
\[
\frac{\bar{x}}{x} > \left(1 + \frac{1}{2} \right)^{\frac{1}{\alpha}} \geq 1 + C x^\alpha \text{ for some } C = O(y^2) > 0 \text{ and therefore (9.5) is true.}
\]
Thus, we get
\[
\left(\frac{1 - \bar{x}^\alpha}{1 - x_1^\alpha} \right)^{\frac{1}{\alpha}} \geq \left(1 + \frac{a\alpha x^\alpha \phi + O(\phi^2)}{2(1 - x_1^\alpha)} \right)^{\frac{1}{\alpha}} \geq 1 + \frac{1}{4} x^\alpha \phi.
\]

Since both $\bar{z} = (\bar{x}, \bar{y})$ and $z = (x, y)$ are in the same local unstable manifold, $|\bar{y} - y| \leq N(\bar{x} - x) \leq N(x_1 - x) = N x \phi$ for some $N > 0$. So,
\[
\left| \left(\frac{y}{\bar{y}} \right)^{\frac{a_2}{b_2}} \right| \leq \left(1 + \frac{N x \phi}{\bar{y}} \right)^{\frac{a_2}{b_2}} = 1 + O(x).
\]

By (8.9) we have
\[
\exp \int_{\bar{y}}^{y} \frac{\hat{\rho}(y)}{y} \, dy \leq \exp(L_{\hat{\rho}}|y - \bar{y}|) \leq \exp(L_{\hat{\rho}} N x \phi) = 1 + O(x).
\]

Summarizing these results, we get that if x is small enough, then
\[
\frac{\bar{x}}{x} \geq 1 + \frac{1}{4} x^\alpha \phi + O(x) \geq 1 + \frac{a_2 x^2}{8} x^\alpha.
\]
Proof of Theorem B(I). By Lemmas 9.1, 9.2 and 8.1.i) we know that the sum $\Delta^+\Delta^-$ in (7.6) converges. Similarly, we have $\Delta^+, \Delta^-, \Delta^+ \leq \infty$. Thus the result follows from Proposition 7.8.

Remark 9.3. By Lemma 9.2 and 8.1.i), we can see that under the assumptions of the theorem, the rate of convergence of the series in (7.6) is faster than $n^{-\frac{1}{2}}$.

10. Existence of infinite SBR measures

We prove the second part of Theorem B. We get the lower bounds of $|v^n|$ in Lemma 10.2 and then prove in Lemma 10.3 that there is at least one series in (7.6) whose general terms decrease at a rate slower than $n^{-\frac{1}{2}}$.

Lemma 10.1. Suppose $2a_2 < a b_2$. Then for any constants $K, N > 0$, point $q = (0, y_q)$ with $y_q > 0$ small, there exists $\epsilon > 0$ such that $\forall z_0 = (x_0, y_0) \in W^a_q(q)$ with $x_0 > 0$, the inequalities

$$x_0y_0 \prod_{j=0}^{n} \left(1 - \frac{7}{8}y_j \psi_j(0, y_i)\right)^{-1} \geq N \quad \text{and} \quad K x_n \leq y_n$$

hold simultaneously for some $n = n(z_0) > 0$.

Proof. We may assume that K is large enough such that if $Kx \leq y$, then

$$1 - \frac{7}{8}y \psi_y(0, y) \leq 1 - \frac{13}{8}b_2y^2 \leq (1 - \psi)^{\frac{1}{2}}$$

and

$$(1 + \phi)^{(1 - \psi)^{\alpha^+}} \leq 1$$

for some $\alpha < \alpha^+ < 1$. Hence for any $z_0 = (x_0, y_0)$ with $Kx_0 < y_0$, we have $x_1^{\alpha^+} = (1 + \phi)^{\alpha^+} \leq (1 - \psi)^{\alpha^+} \leq x_0^{\alpha^+}$. Let $n = n(z_0)$ be the largest integer such that $Kx_n \leq y_n$. Thus $Kx_n+1 > y_n+1$. So we have

$$x_0^{2\alpha^+} \geq x_0^{\alpha^+} \geq K^{-2}y_n^{2\alpha^+}$$

and therefore

$$\frac{x_0y_0}{\prod_{j=0}^{n} (1 - \frac{7}{8}y_j \psi_j(0, y_i)) \geq \frac{y_0^{\frac{2}{y_0} \cdot \prod_{j=0}^{n} (1 - \psi_j)^{\frac{1}{2}}} \geq \frac{x_0y_0^{\frac{1}{2}}} {y_0^{(5-\alpha^+)/2}} \geq \frac{y_0^{\frac{1}{2}}} {y_0^{(1-\alpha^+)/2}}.}$$

Since $y_{n+1} \to 0$ as $z_0 = (x_0, y_0) \to q = (0, y_q)$, we get the result.

Lemma 10.2. Suppose $2a_2 < a b_2$ and $b_1 < 0 < a_1$. Then for any point $q = (0, y_q)$ with $y_q > 0$, there exists $\epsilon > 0$ such that $\forall z_0 = (x_0, y_0) \in W^a_q(q)$ with $x_0 > 0$,

$$v^n_{z_0} \leq -\left(\frac{a_2}{b_2} + \hat{\rho}(y_0)\right) x_0y_0.$$

Proof. For each $z_0 = (x_0, y_0) \in W^a_q(q)$, define $c_0 = 0$ and

$$c_i = \frac{a_2}{b_2} (a_1 - \frac{a_2}{b_1}) x_0y_0 \prod_{j=1}^{i-1} \left(1 - \frac{7}{8}y_j \psi_j(0, y_i)\right)^{-1} \quad \forall i > 0.$$

We have

$$c_{i+1} - c_i = c_{i+1} \cdot \frac{7}{8}y_i \psi_i(0, y_i) \quad \forall i > 0.$$
Put
\[
(10.4) \quad \rho_i = \max \left\{ -\frac{1}{3}, \frac{a_2}{b_2} + \hat{\rho}(y_i) - c_i \right\} \quad \forall i \geq 0.
\]

We prove that for each small \(y_q > 0 \), these exist \(\epsilon > 0 \) such that \(\forall z_0 = (x_0, y_0) \in W_{\epsilon}^u(q), \ q = (0, y_q), \) with \(x_0 > 0 \),
\[
(10.5) \quad v_{x_i}^s \geq -\frac{x_i}{y_i}
\]
implies
\[
(10.6) \quad v_{x_{i+1}}^s \geq -\rho_{i+1}\frac{x_{i+1}}{y_{i+1}}.
\]
This will prove the result of the lemma. In fact, if (10.1) is not true, then for some large \(n, \frac{x_n}{y_n} > 3 \) and \(v_{x_n}^s \geq \frac{1}{3} \cdot \frac{x_n}{y_n} > 1 \), contradicting to (8.4).

By Lemma 8.3, to prove that (10.5) implies (10.6), it is enough to show that
\[
\Delta_{\rho_i}(x_i, y_i) = (\rho_i - \rho_{i+1})(1 + \phi_i)(1 - \psi_i)
+ \rho_{i+1}y_i(1 + \phi_i)\psi_y(x_i, y_i) - y_i(1 - \psi_i)\phi_y(x_i, y_i)
- \rho_i \rho_{i+1}x_i(1 + \phi_i)\psi_x(x_i, y_i) + \rho_i x_i(1 - \psi_i)\phi_x(x_i, y_i) \leq 0.
\]

By (10.3) and (10.4),
\[
\rho_i - \rho_{i+1} = \begin{cases}
\hat{\rho}(y_0) - \hat{\rho}(y_1) + c_1, & \text{if } i = 0; \\
\hat{\rho}(y_i) - \hat{\rho}(y_{i+1}) + \frac{a_2}{b_2}c_{i+1}y_i\psi_y(0, y_i) - d_{i+1}, & \text{if } i > 0 \& \rho_i > -\frac{1}{3}; \\
0, & \text{if } i > 0 \& \rho_i = -\frac{1}{3}, \\
\end{cases}
\]
where \(d_{i+1} = \rho(y_{i+1}) - (\frac{a_2}{b_2} + \hat{\rho}(y_{i+1}) - c_{i+1}) \geq 0 \), and \(d_{i+1} = 0 \) except for the case \(\rho_i > -\frac{1}{3} \) and \(\frac{a_2}{b_2} - \hat{\rho}(y_{i+1}) + c_{i+1} < \frac{1}{3} \).

If \(\rho_{i+1} > -\frac{1}{3} \), we write
\[
\rho_{i+1}y_i\psi_y(x_i, y_i) - y_i\phi_y(x_i, y_i) = \left(\frac{a_2}{b_2} + \hat{\rho}(y_{i+1}) \right)y_i\psi_y(0, y_i) - y_i\phi_y(0, y_i)
- (c_{i+1} - d_{i+1})y_i\psi_y(0, y_i) + (\rho_{i+1}b_1 - a_1)x_iy_i + x_iy_iO(x_i + y_i);
\]
otherwise,
\[
\rho_{i+1}y_i\psi_y(x_i, y_i) - y_i\phi_y(x_i, y_i)
= 2(\rho_{i+1}b_2 - a_2)y_i^2 + (\rho_{i+1}b_1 - a_1)x_iy_i + x_iy_iO(x_i + y_i).
\]

Also,
\[
- \rho_i \rho_{i+1}x_i\psi_x(x_i, y_i) + \rho_i x_i\phi_x(x_i, y_i)
= - \rho_i(\rho_{i+1}b_1 - a_1)x_iy_i - 2\rho_i(\rho_{i+1}b_0 - a_0)x_i^2 + x_iy_iO(x_i + y_i).
\]
Similarly, as in the proof of Lemma 9.1, we use Lemma 8.4 to get
\[
\Delta_{\rho_i}(x_i, y_i) = D_i(x_i, y_i) + (1 - \rho_i)(\rho_{i+1}b_1 - a_1)x_iy_i
- 2\rho_i(\rho_{i+1}b_0 - a_0)x_i^2 + x_iy_iO(x_i + y_i),
\]
where
\[
D_i(x_i, y_i) \leq \begin{cases}
\frac{a_2}{b_2}(a_1 - \frac{a_2}{b_2}b_1)x_0y_0 & \text{if } i = 0; \\
-\frac{1}{3}c_{i+1}y_i\psi_y(0, y_i) & \text{if } i > 0 \& \rho_i > -\frac{1}{3}; \\
2(\rho_{i+1}b_2 - a_2)y_i^2 & \text{if } i > 0 \& \rho_i = -\frac{1}{3}, \\
\end{cases}
\]
Recall $2a_2 < a b_2$ and $b_1 < 0 < a_1$. Since $\rho_0 = \frac{a_2}{b_2} + O(y_0) \leq \frac{a_2}{b_2} + O(y_0)$ and $\rho_1 = \rho_0 + O(y_0^2)$, we have $\rho_1 b_1 - a_1 = \frac{a_2}{b_2} b_1 - a_1 + O(y_0) \leq 0$ and $1 - \rho_0 - \frac{a_2}{b_2} > 0$ if y_0 is small. So if $K x_0 \leq y_0$ for some large K, then $\Delta_{\rho_0}(x_0, y_0) \leq 0$.

For the case $i > 0$ and $\rho_i > -\frac{1}{3}$, by Lemma 10.1, we can choose ϵ small enough such that $K x_i \leq y_i$ for some large K. Also, $y_i \psi_i(0, y_i) = 2b_2 y_i^2 + O(y_i^3)$. So if $\rho_{i+1} \geq 0$, then both y_i and $x_i y_i$ terms has negative sign, and if $\rho_{i+1} \leq 0$, then $c_{i+1} > \frac{a_2}{b_2}$ and therefore the first term can control other terms.

For the case $\rho_i = -\frac{1}{3}$, we can see that $\Delta_{\rho_i}(x_i, y_i)$ is equal to

$$2(-\frac{1}{3} b_2 - a_2) y_i^2 + \frac{4}{3}(-\frac{1}{3} b_1 - a_1) x_i y_i + \frac{2}{3}(-\frac{1}{3} b_0 - a_0) x_i^2 + x_i y_i O(x_i + y_i)$$

$$= -\frac{2}{3}(3a_2 y_i^2 + 2a_1 x_i y_i + a_0 x_i^2) - \frac{2}{9}(3b_2 y_i^2 + 2b_1 x_i y_i + b_0 x_i^2) + x_i y_i O(x_i + y_i).$$

By (8.2) it is less than 0. This proves the lemma.

Lemma 10.3. Let $z_0 = (x_0, y_0)$ with $x_0, y_0 > 0$. If for all $z = (x, y)$ in the stable curve that joins z_0 and z_1,

$$v^s_{z_0} \leq -\left(\frac{a_2}{b_2} + \hat{\rho}(y_0) \right) \frac{x_0}{y_0},$$

then

$$\bar{x}_0 \leq x_0 + C x_0^2$$

for some constant $C = C(y_q) > 0$, where \bar{x} satisfies $\bar{z} = (\bar{x}, \bar{y}) = [z, f z]$.

Proof. Using a similar way as in the proof of Lemma 9.3, we can get

$$\frac{\bar{x}_0}{x_0} \leq \exp \frac{1}{b_2} \left[b_2 \log(1 + \phi_0) + a_2 \log(1 - \psi_0) - b_2 \int_{y_1}^{y_0} \frac{\hat{\rho}(y)}{y} d y \left(\frac{y_0}{y} \right)^{b_2} \right] \cdot \exp \int_{y_0}^{y_0} \frac{\hat{\rho}(y)}{y} d y \leq 1 + O(x_0).$$

Therefore the result follows.

Proof of Theorem B(II). First we assume that $b_1 < 0 < a_1$. By Lemma 10.3 and 8.1.ii), $\Delta^{++} = \infty$, where Δ^{++} is defined in (7.6). Therefore by Proposition 7.8 f has an infinite SBR measure.

By (1.3) and (1.4), the signs of a_1 and b_1 change under the transformation $x \rightarrow -x$ and $y \rightarrow -y$ respectively. So under the assumption of Theorem B (II), we can always find a suitable coordinate system such that $b_1 < 0 < a_1$.

References

 DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742

Current address: Department of Mathematics, Penn State University, University Park, Pennsylvania 16801

E-mail address: hu@math.psu.edu