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THE STRUCTURE OF CONJUGACY CLOSED LOOPS

KENNETH KUNEN

Abstract. We study structure theorems for the conjugacy closed (CC-) loops,
a specific variety of G-loops (loops isomorphic to all their loop isotopes). These
theorems give a description all such loops of small order. For example, if p and
q are primes, p < q, and q − 1 is not divisible by p, then the only CC-loop of
order pq is the cyclic group of order pq. For any prime q > 2, there is exactly
one non-group CC-loop in order 2q, and there are exactly three in order q2.
We also derive a number of equations valid in all CC-loops. By contrast, every
equation valid in all G-loops is valid in all loops.

1. Introduction

A quasigroup is a system Q = (G, ·) such that G is a non-empty set and ·
is a binary function on G satisfying ∀xy∃!z(xz = y) and ∀xy∃!z(zx = y). In a
quasigroup, we may name the z as a function of x, y and define left division, \, and
right division, /, by

x · (x\y) = y, (y/x) · x = y,(1)

By cancellation, and setting y = xu or y = ux, we have also

x\(x · u) = u, (u · x)/x = u.(2)

As usual, equations written this way with variables are understood to be universally
quantified. Quasigroups are often defined to be systems of the form Q = (G, ·, \, /)
satisfying (1) and (2); this lets us define the notion in a purely equational way, with-
out existential quantifiers. A loop is a quasigroup which has an identity element,
1, satisfying ∀x(x1 = 1x = x). See the books [1], [5], [16] for general background
and references to the literature on quasigroups and loops.

There are probably no interesting results about the class of all loops, since it is
too broad; for example, there are already 109 loops of order six [2]. However, there
has been much study of specific classes of loops. Most well-known are the groups,
which are the associative loops. For these, there are many structure theorems,
which enable one to enumerate easily the groups of small orders; for example, there
are only two groups of order six. In this paper, we look at structure theorems for
conjugacy closed loops.
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Definition 1.1. A loop is conjugacy closed (or a CC-loop) iff it satisfies the two
identities:

RCC : z(yx) = ((zy)/z)(zx), LCC : (xy)z = (xz)(z\(yz)).

Actually, every quasigroup satisfying both these identities must be a loop; see
Section 6. Clearly, every group is a CC-loop. The reason for the terminology
“conjugacy closed” is explained in Remark 3.2.

The reader unfamiliar with previous work on these loops [10][11][17] may not
see why this particular variety of loop is interesting. One motivation for studying
CC-loops is that they arise naturally in the study of isotopy, and the CC-loops form
a natural variety of G-loops (= isotopy-isomorphy loops), as we explain in Section
2, which collects some useful results and definitions from the literature. The other
is that the CC-loops have a non-trivial structure theory, described in Section 4; see
also Goodaire and Robinson [10], where the notion originated. Using this structure
theory, one may compute the CC-loops of small order. For example, if p is an odd
prime, we show (Theorem 4.15) that the only non-group CC-loop of order 2p is the
one constructed by R. L. Wilson, Jr. [19]. For p = 3, this loop is displayed in Table
1. Also (Theorem 4.17), in order p2, there are exactly three non-group CC-loops,
constructed by the method of Goodaire and Robinson [10].

Table 1. A CC-Loop

• 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 1 5 6 4
3 3 1 2 6 4 5
4 4 6 5 2 1 3
5 5 4 6 3 2 1
6 6 5 4 1 3 2

By another result of Wilson [18], the only G-loop, and hence the only CC-loop,
of prime order p is the cyclic group of order p. We show (Theorem 4.17) that for
CC-loops, the same is true for orders pq, where p < q are primes with q − 1 not
divisible by p. Note that for these pq, the fact that any group of order pq must be
cyclic is an easy exercise in using the Sylow theorems. The structure theory for
CC-loops uses combinatorial arguments similar to those used in the proof of the
Sylow theorems.

If p < q are primes and q−1 is divisible by p, then in order pq, there are CC-loops
which are not groups (see Corollary 3.3.1 of [10]), as well as non-abelian groups.

The Moufang loops, whose structure is already widely discussed in the literature
[1][4], are always diassociative (that is, every two elements generate a group) by
Moufang’s Theorem. The CC-loops need not even be power associative (that is,
every single element generates a group); for example, in Table 1, the single ele-
ment 4 generates the whole loop. It is shown in [11] that the CC-loops which are
diassociative (equivalently, Moufang) are the extra loops studied by Fenyves [7][8].

It might seem that the structure for non-power-associative loops might be in-
tractable, but we show (Theorem 3.11) that in a CC-loop, xy = 1 implies that yx
is in the nucleus. From this we shall conclude (Theorem 3.21) that either the loop
is power associative or the nucleus is non-trivial. In particular (Corollary 4.6), this
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implies that if G is any finite CC-loop, then for some prime p dividing |G|, G has
a subloop H isomorphic to the cyclic group of order p. In Table 1, |G| = 6, p = 3,
and H = {1, 2, 3}; there are no subloops of order 2, as one might have hoped from
group theory.

Our structure theory succeeds through the study of loop automorphisms. In
a group, the inner automorphisms are related to failures of commutativity. In
the same way, CC-loops possess a family of automorphisms related to failures of
associativity. This is described in more detail in Section 2. In Section 3, we derive
a number of equations and implications between equations used in the structure
theory in Section 4. The division between these two sections is a bit arbitrary, but
in general, the results of Section 3 hold for all CC-loops, whereas Section 4 uses
counting arguments to prove theorems about finite CC-loops.

One might ask to what extent the results of this paper hold for G-loops in general.
In Section 5 we show that every equation (in fact, every universal statement) true
in all G-loops is true in all loops, so that we do not have any analog to the results
in Section 3.

In developing this work, we have found it very useful to use the automated
reasoning tools OTTER [15], programmed by W. W. McCune, and SEM [20], pro-
grammed by J. Zhang and H. Zhang. OTTER is used in deriving equations from
other equations, and was instrumental in producing many of the results in Section
3. OTTER’s proofs are simply sequences of fifty or so intermediate equations, and
seem at first to have little intuitive content, but following the method of previ-
ous work [12][13][14], we have rephrased OTTER’s proofs using more conceptual
notions, such as the action of automorphisms. SEM is used to construct finite
examples. For example, the CC-loops given in Table 1 and Example 2.20 were con-
structed using SEM. Once one has such an example, it is usually possible to describe
it in a more conceptual way; for example, the loop in Table 1 can be recognized
as the one already constructed by Wilson (see [19] or Theorem 4.15), and we have
described the one in Example 2.20 as a semidirect product. We originally tried to
use SEM to construct a non-group CC-loop of order 15, but this failed, proving that
there was no such loop. We then found the proof in this paper (Theorem 4.17),
which does not rely on a computer search and which generalizes to other orders of
the form pq. Besides the results explicitly presented in this paper, OTTER and
SEM were very useful for quick experimentation and for checking out (often false)
conjectures.

2. Isotopy and G-Loops

Throughout this section, (G, ·) always denotes a loop. The theory of isotopy lets
us associate with (G, ·) a number of permutation groups. One may then apply
familiar methods from group theory to study G. We begin with the autotopy group
(see [1], p. 112).

Definition 2.1. SYM(G) denotes the group of all permutations of the set G;
I ∈ SYM(G) is the identity element. AT OP(G, ·) is the set of triples (α, β, γ) in
(SYM(G))3 such that

∀x, y, z ∈ G[xα · yβ = (xy)γ].

It is easy to see that AT OP(G) is a subgroup of (SYM(G))3.
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Definition 2.2. Define AUT (G, ·),LII(G, ·),RII(G, ·), II(G, ·) by

α ∈ AUT (G, ·) ⇐⇒ (α, α, α) ∈ AT OP(G, ·),
α ∈ LII(G, ·) ⇐⇒ ∃φ ∈ SYM(G)[ (φ, α, α) ∈ AT OP(G, ·) ],
α ∈ RII(G, ·) ⇐⇒ ∃ψ ∈ SYM(G)[ (α, ψ, α) ∈ AT OP(G, ·) ],
α ∈ II(G, ·) ⇐⇒ ∃φ, ψ ∈ SYM(G)[ (φ, ψ, α) ∈ AT OP(G, ·) ].

So, AUT (G, ·) is the group of automorphisms of (G, ·). Bryant and Schneider
[2] called II(G, ·) the group of (G, ·). It is immediate from the definitions that:

Lemma 2.3. Each of the sets AUT (G, ·),LII(G, ·),RII(G, ·), II(G, ·) is a sub-
group of SYM(G). Furthermore,

AUT (G, ·) ⊆ LII(G, ·) ∩RII(G, ·),
LII(G, ·) ∪RII(G, ·) ⊆ II(G, ·).

Another family of elements of SYM(G) is given by left and right multiplications
by elements of G:

Definition 2.4. For each a ∈ G, define La = L(a) and Ra = R(a) in SYM(G) by

xLa = a · x, xRa = x · a.
These are related to the autotopy group by

Lemma 2.5. Suppose that (α, β, γ) ∈ AT OP(G, ·). Let b = 1β−1 and a = 1α−1.
Then for all x, y: xα = (xb)γ, yβ = (ay)γ, and (xb)γ · (ay)γ = (xy)γ. Thus,
α = Rbγ, β = Laγ, and (Rbγ, Laγ, γ) ∈ AT OP(G, ·).
Proof. Use bβ = 1 and then aα = 1 in the definition (2.1) of AT OP .

Now, applying this lemma to the definition of LII,RII, II:

Lemma 2.6. If α ∈ SYM(G), then:
1. α ∈ II(G, ·) iff for some a, b ∈ G: (Rbα,Laα, α) ∈ AT OP(G, ·), in which

case (ab)α = 1.
2. α ∈ LII(G, ·) iff for some b ∈ G: (Rbα, α, α) ∈ AT OP(G, ·), in which case
b must be 1α−1.

3. α ∈ RII(G, ·) iff for some a ∈ G: (α,Laα, α) ∈ AT OP(G, ·), in which case
a must be 1α−1.

Corollary 2.7. AUT (G, ·) = {α ∈ LII(G, ·) : 1α = 1} = {α ∈ RII(G, ·) : 1α =
1}.

For every loop, we may define the left nucleus (Nλ), the middle nucleus (Nµ),
the right nucleus (Nρ), and the center (Z):

Definition 2.8. For any loop (G, ·) and a ∈ G:
a ∈ Nλ(G, ·) iff ∀x, y ∈ G [a(xy) = (ax)y].
a ∈ Nµ(G, ·) iff ∀x, y ∈ G [x(ay) = (xa)y].
a ∈ Nρ(G, ·) iff ∀x, y ∈ G [x(ya) = (xy)a].
a ∈ Z0(G, ·) iff ∀x ∈ G [xa = ax].
N(G, ·) = Nλ(G, ·) ∩Nµ(G, ·) ∩Nρ(G, ·).
Z(G, ·) = N(G, ·) ∩ Z0(G, ·).
It will turn out (Lemma 2.15) that Z0(G, ·) = Z(G, ·) for CC-loops. It is easy to

verify the following equivalents, in terms of autotopy.
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Lemma 2.9. For any loop (G, ·):
Nλ(G, ·) = {a ∈ G : (La, I, La) ∈ AT OP(G, ·)}.
Nµ(G, ·) = {a ∈ G : (R−1

a , La, I) ∈ AT OP(G, ·)}.
Nρ(G, ·) = {a ∈ G : (I, Ra, Ra) ∈ AT OP(G, ·)}.
Z0(G, ·) = {a ∈ G : La = Ra}.

Corollary 2.7 can fail for II(G, ·); that is, one can have α ∈ II(G, ·) and 1α = 1
without α being an automorphism of the loop, but such an α must be an automor-
phism of the nucleus.

Lemma 2.10. Suppose that α ∈ II(G, ·) and 1α = 1. Then:
1. If either u ∈ Nλ or v ∈ Nρ, then uα · vα = (uv)α.
2. α � Nλ ∈ AUT (Nλ, ·).
3. α � Nρ ∈ AUT (Nρ, ·).

Proof. Fix a, b as in Lemma 2.6.1. So, (xb)α · (ay)α = (xy)α for all x, y. Equiv-
alently, uα · vα = ((u/b) · (a\v))α for all u, v. Since (ab)α = 1 = 1α, ab = 1.
Now suppose that u ∈ Nλ. Then (ua)b = u(ab) = u, so ua = u/b. Hence,
uα · vα = ((ua) · (a\v))α = (u · (a(a\v)))α = (uv)α. The mirror of this argument
works for v ∈ Nρ.

So, α maps Nλ isomorphically onto its range. To prove (2), we need (Nλ)α = Nλ.
Now, if u ∈ Nλ, then applying (1), (uα · (xb)α) · (ay)α = (uxb)α · (ay)α = (uxy)α =
uα · (xy)α = uα · ((xb)α · (ay)α). Since (xb)α and (ay)α can be arbitrary elements
of G, this proves that uα ∈ Nλ, so (Nλ)α ⊆ Nλ. Applying this argument to α−1

shows that (Nλ)α = Nλ.

So far, this whole discussion could be vacuous, since it is not clear whether
II(G, ·) contains anything besides the identity permutation, I. However, in G-
loops, LII and RII are large enough to make Corollary 2.7 and Lemma 2.10
useful for producing automorphisms.

Definition 2.11. A loop G is a G-loop iff for each a, b ∈ G, there is an α ∈
SYM(G) such that (Rbα,Laα, α) ∈ AT OP(G, ·); that is, (xb)α · (ay)α = (xy)α
for all x, y ∈ G.

This α will be in II(G, ·) by Lemma 2.6.1. Furthermore, the special cases where
a = 1 or b = 1 will provide us with a supply of permutations in LII(G, ·) and
RII(G, ·) by Lemma 2.6.2 and Lemma 2.6.3. Actually, by E. L. Wilson [17], being
a G-loop is equivalent to these special cases:

Lemma 2.12. A loop (G, ·) is a G-loop iff both
• for each b ∈ G, there is a β ∈ SYM(G) such that (Rbβ, β, β) ∈ AT OP(G, ·),

and
• for each a ∈ G, there is a γ ∈ SYM(G) such that (γ, Laγ, γ) ∈ AT OP(G, ·).

Proof. For the non-trivial direction, fix a, b ∈ G. First fix β ∈ LII(G, ·) such that
b = 1β−1, so that (xb)β ·yβ = (xy)β for all x, y. Then, fix α ∈ RII(G, ·) such that
(x)γ · (cy)γ = (xy)γ for all x, y, where c = (ab)β. Let α = βγ. Then for all x, y:
(xy)α = ((xb)β ·yβ)γ = (xb)βγ ·((ab)β ·yβ)γ = (xb)βγ ·((ay)β)γ = (xb)α·(ay)α.

Definition 2.11 has the following interpretation: Let u = xb and v = ay, so that
we have uα · vα = ((u/b) · (a\v))α. Thus, if we define a new product, ◦, so that
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u ◦ v = (u/b) · (a\v), then ◦ is another loop operation on G, with identity a · b, and
α is an isomorphism from (G, ·) to (G, ◦). This ◦ is called a principal loop isotope.
That is, the G-loops are those loops which are isomorphic to all their principal loop
isotopes, and α ∈ II(G, ·) iff α is an isomorphism onto a principal loop isotope.

In a G-loop, Definition 2.11 “seems” to pair an α ∈ II(G, ·) with an (a, b) ∈ G2,
but this “correspondence” is not a function. By Bryant and Schneider [1] and
R. L. Wilson, Jr. [18], each α has |Nµ| corresponding (a, b), and each (a, b) has
|AUT (G, ·)| corresponding α. Hence, |G|2 · |AUT (G, ·)| = |II(G, ·)| · |Nµ|. When
|G| is prime, this implies that |Nµ| = |G|, so that G is a group. Unfortunately, if
|G| is not prime, this type of analysis does not yield much information for G-loops
in general.

We now consider “natural G-loops”, in which the β and γ from Lemma 2.12
have some simple definition. So, fix an a ∈ G, and consider the requirement that
there be a γ ∈ SYM(G) such that (γ, Laγ, γ) ∈ AT OP(G, ·). A group is a G-loop,
since we may let γ be either L−1

a or R−1
a . It is natural to consider loops in which

one of these choices works as well. The first is uninteresting, since it holds only
in groups. If γ = L−1

a , we have (L−1
a , LaL

−1
a , L−1

a ) ∈ AT OP(G, ·); equivalently,
(La, I, La) ∈ AT OP(G, ·), so that a ∈ Nλ(G, ·) (by Lemma 2.9). If this holds for all
a, then G is a group. Now, if γ = R−1

a , we have (R−1
a , LaR

−1
a , R−1

a ) ∈ AT OP(G, ·);
equivalently, (Ra, RaL−1

a , Ra) ∈ AT OP(G, ·); translating this to an equation, we
get precisely equation LCC from Definition 1.1.

Likewise, consider the requirement that for each b ∈ G, there be a β ∈ SYM(G)
such that (Rbβ, β, β) ∈ AT OP(G, ·). In groups, β could be either L−1

b or R−1
b . In

any loop, if β is always R−1
b , then the loop is a group, whereas if β is always L−1

b ,
then we have each (LbR−1

b , Lb, Lb) ∈ AT OP(G, ·), which yields equation RCC.
Hence:

Lemma 2.13. A loop (G, ·) is conjugacy closed iff both Ra ∈ RII(G, ·) and La ∈
LII(G, ·) for each a ∈ G. If (G, ·) is conjugacy closed, then (G, ·) is a G-loop, and
both (Ra, RaL−1

a , Ra) and (LaR−1
a , La, La) are in AT OP(G, ·).

We may now take various products from RII(G, ·) and LII(G, ·) to produce
automorphisms. In particular, as in [10]:

Lemma 2.14. If G is conjugacy closed, then for each a, b ∈ G, both RaRbR−1
ab and

LaLbL
−1
ba are automorphisms of G.

Proof. By Lemma 2.13, RaRbR−1
ab ∈ RII(G, ·). It is then an automorphism by

Corollary 2.7.

Note that in every loop, the associative law holds iff RaRbR
−1
ab = I for all a, b.

However, in CC-loops, the fact that these are automorphisms lets us use automor-
phism arguments to study non-associative CC-loops in the same way that inner
automorphisms are used to study non-commutative groups. Every commutative
CC-loop is a group; more generally, for any CC-loop, the three nuclei coincide [10]
and contain Z0 (see Definition 2.8).

Lemma 2.15. For any CC-loop (G, ·): Z(G, ·) = Z0(G, ·) ⊆ N(G, ·) = Nλ(G, ·) =
Nµ(G, ·) = Nρ(G, ·).

Proof. Apply Lemma 2.9 and Lemma 2.13, plus the fact that AT OP(G, ·) is a
group.
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Definition 2.16. For any a ∈ G, let Ja = RaL
−1
a and let Ea = RaRa\1.

In a group, Ea = I and Ja is an inner automorphism. In a CC-loop, Ea is an
automorphism (by Lemma 2.14); Ja need not be an automorphism of the loop, but
it does define an automorphism of the nucleus [10] (apply Lemma 2.10; note that
Ja ∈ II(G, ·) and 1Ja = 1).

Corollary 2.17. For any CC-loop (G, ·), let N = N(G, ·). Then Ea ∈ AUT (G, ·),
and Ja � N ∈ AUT (N, ·), for each a ∈ G.

Corollary 2.18. For any CC-loop (G, ·), if |N(G, ·)| = 2 then Z(G, ·) = N(G, ·).
Proof. Since the only automorphism of N(G, ·) is the identity, it follows that for
each a ∈ G, and each x ∈ N(G, ·), xLaR−1

a = x, so ax = xa.

Table 1 is an example of a CC-loop in which the nucleus has size 3 and the center
has size 1. Nevertheless, we shall see later (Lemma 4.16) that the method of proof
of Corollary 2.18 is useful for proving the center to be non-trivial in cases where
the nucleus has size greater than two, if we have some further information about
the orders of these Ja.

Some further examples of non-group CC-loops are described in Goodaire and
Robinson [10]. In addition, the following, which is a modification of the semidirect
product construction in groups, will be useful later as a source of counterexamples:

Lemma 2.19. Suppose that G = H × A, where (H,+) and (A,+) are abelian
groups, and we define a product on G by

(h, x) · (k, y) = (h+ kθx + ix,y , x+ y)

where the θx, for x ∈ A, and the ix,y, for x, y ∈ A, satisfy:
1. Each θx is an automorphism of H and θx+y = θxθy.
2. Each ix,y is an element of H and ix,0 = i0,y = 0.
3. For each x, y, z:

iy,zθx + ix,y+z = ix,y − iy,x + ix,zθy + iy,x+z,

ix,y + ix+y,z = ix,z + iy,zθx − iz,yθx + ix+z,y.

Then G is a CC-loop. Furthermore, {h ∈ H : ∀y[hθy = h]} × {0} ⊆ Z(G) and
H × {0} ⊆ N(G).

Proof. Note that by item (1), we also have θ−x = (θx)−1 and θ0 = I. Using this
plus item (2), it is easy to see that (0, 0) is the identity element of G. To prove that
G is a loop, and to identify \ and /, we may solve the equation (h, x) · (k, y) = (`, z)
for (k, x) or for (h, y) to obtain:

(h, x)\(`, z) = ((`− h− ix,z−x)θ−x , z − x),
(`, z)/(k, y) = (`− kθz−y − iz−y,y , z − y).

We compute the product of three elements as:

(h, x) · [(k, y) · (`, z)] = (h+ kθx + `θx+y + iy,zθx + ix,y+z , x+ y + z),
[(h, x) · (k, y)] · (`, z) = (h+ kθx + `θx+y + ix,y + ix+y,z , x+ y + z).

Note that these are equal iff ix,y + ix+y,z = iy,zθx + ix,y+z, which holds whenever
at least one of x, y, z is 0 (applying item (2) and θ0 = I), so that H ×{0} ⊆ N(G).
Likewise, using the definition of ·, any element of the form (h, 0) is in the center iff
hθy = h for all y.
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Now, equations RCC and LCC require:

RCC : (h, x) · [(k, y) · (`, z)] = [((h, x)(k, y)) / (h, x)] · [(h, x)(`, z)],
LCC : [(h, x) · (k, y)] · (`, z) = [(h, x)(`, z)] · [(`, z) \ ((k, y)(`, z))].

The right-hand sides of these are:

RCC : (h+ kθx + `θx+y + ix,y − iy,x + ix,zθy + iy,x+z , x+ y + z),

LCC : (h+ kθx + `θx+y + ix,z + iy,zθx − iz,yθx + ix+z,y , x+ y + z).

Thus, to get RCC and LCC, we need precisely item (3).

Note that if ix,y = 0 for all x, y, then G is a group, and the construction reduces
to the standard semidirect product. The following use of Lemma 2.19 to get a
non-group G will be useful later:

Example 2.20. In Lemma 2.19, take (H,+) ∼= (A,+) ∼= Z2 × Z2, where H =
{0, p, q, s} and A = {0, a, b, c}. Define θx and ix,y by:

x θx
0 I
a I
b (p, q)
c (p, q)

↑
x
↓

←− y −→
ix,y 0 a b c
0 0 0 0 0
a 0 p 0 q
b 0 p 0 p
c 0 0 s 0

Then G = H × A is a 16-element CC-loop satisfying the equation (1/x) = (x\1),
with a 4-element nucleus, H × {0}, and a 2-element center, {0, s}× {0}. This loop
contains α, β such that αα = 1 but α(αβ) 6= β and (βα)α 6= β; furthermore, the
cosets, 〈α〉 · β and 〈α〉 · αβ, are neither equal nor disjoint.

Proof. G is a CC-loop by Lemma 2.19; the tedium of verifying item (3) there may
be alleviated somewhat by noting that the equations are trivially true if one of
x, y, z is 0, so that there are only 33 = 27 cases to verify, not 43 = 64. It is clear
from the proof of Lemma 2.19 that an element (k, y) is in Nµ(G) iff

∀xz[ix,y + ix+y,z = iy,zθx + ix,y+z]

which implies in particular

∀z[ia,y + ia+y,z = iy,z + ia,y+z].

For y = a and y = b, this is refuted by z = b, and for y = c, this is refuted
by z = c. Hence, the only possible elements of the nucleus have form (k, 0), so
N(G) = H × {0}. Furthermore, (k, 0) cannot be in the center unless kθy = k for
all y, so Z(G) = {0, s} × {0}.

The equation (1/x) = (x\1) is immediate from the formulas for / and \ derived
in the proof of Lemma 2.19.

Finally, let α = (0, c) and β = (0, b). Then αα = (0, 0), αβ = (s, a) and
α(αβ) = (s, b) 6= β. Also, βα = (p, a) and (βα)α = (s, b) 6= β. Furthermore,
〈α〉 · β ∩ 〈α〉 · αβ = {β, αβ} ∩ {αβ, α(αβ)} = {αβ}.
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3. Some Useful Equations

Throughout this section, (G, ·) always denotes a conjugacy closed loop. We col-
lect here a number of equations and implications between equations which G must
satisfy. Often (but not always), it is more transparent to state and prove equations
in terms of permutations. For example, in Lemma 2.14, the fact that RaRbR−1

ab is
an automorphism could be expressed as the equation (((xa)b)/ab) · (((ya)b)/ab) =
((((xy)a)b)/ab) and then derived directly from equations LCC and RCC of Def-
inition 1.1, but this derivation would be a bit messy and obscure. We begin by
re-stating the definition of “conjugacy closed” in terms of conjugations.

Lemma 3.1. For any x, y :
1. L−1

x RyLx = R−1
x Rxy and R−1

x LyRx = L−1
x Lyx.

2. L−1
x LyLx = L(xy)/x and R−1

x RyRx = Rx\(yx).
3. LxRyL−1

x = R−1
x\1Rx\y and RxLyR

−1
x = L−1

1/xLy/x.
4. LxLyL−1

x = Lx\(yx) and RxRyR
−1
x = R(xy)/x.

Proof. The equation RCC of Definition 1.1 asserts both RxLz = LzR
−1
z Rzx and

LyLz = LzL(zy)/z; equivalently, L−1
z RxLz = R−1

z Rzx and L−1
z LyLz = L(zy)/z.

Renaming the variables, and applying also LCC, we get both (1) and (2). To
obtain item (3), use the conjugations in item (1) to compute L−1

x R−1
x\1Rx\yLx and

R−1
x L−1

1/xLy/xRx. Item (4) is proved likewise from (2).

Remark 3.2. The equations (2) of Lemma 3.1 are easily seen to be equivalent to
RCC and LCC. Originally [10], a CC-loop was defined to be a loop in which the
left and right multiplications were closed under conjugations – that is, for all x, y,
there are u, v such that L−1

x LyLx = Lu and R−1
x RyRx = Rv. But this requires that

u = (xy)/x and v = x\(yx), so we retrieve equations (2). Hence, our definition of
CC-loop is equivalent to the original one.

Lemma 3.3. If cd = 1, then L−1
c RdLc = R−1

c , R−1
d LcRd = L−1

d , and Ec =
RcRd = L−1

c L−1
d ∈ AUT (G, ·). Furthermore, J−1

c = RdLc and Jd = LcRd.

Proof. The first two equations are immediate from Lemma 3.1.1. These yield Lc =
RdLcRc = RdL

−1
d R−1

d ; cancelling the Rd, we get RcRd = L−1
c L−1

d . Finally, Ec ∈
AUT (G, ·) by Corollary 2.17.

Lemma 3.4. For any x, y, xy = yx iff LxLy = LyLx iff RxRy = RyRx.

Proof. By Lemma 3.1.2.

Lemma 3.5. For any x, y, Rxy = RxRy iff LxRy = RyLx iff Lxy = LyLx.

Proof. By Lemma 3.1.1.

Lemma 3.6. For any x, y, Jxy = JxRyLxR
−1
y L−1

x Jy.

Proof. By Lemma 3.1.1 and the definition of J .

This lemma is most useful when the commutator, RyLxR−1
y L−1

x , disappears.
That could happen in several ways. First, recall (Corollary 2.17) that Jx defines
an automorphism of the nucleus. It follows that:

Corollary 3.7. Let N = N(G, ·). Then JxJy � N = Jxy � N .
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Thus, the map x 7→ Jx yields a homomorphism from G into AUT (N, ·). Next,
we may consider subloops other than the nucleus.

Definition 3.8. A subloop H of G is nuclear iff for all h, k ∈ H , Rhk = RhRk.

Note that the nucleus is nuclear and that every nuclear subloop must be a group.
In view of Lemma 3.5, the condition Rhk = RhRk could have been replaced by
LhRk = RkLh, or by Lhk = LkLh.

Lemma 3.9. If H is a nuclear subloop of G, then JhJk = Jhk for all h, k ∈ H,
and Jd maps H isomorphically onto HJd for all d ∈ G.

Proof. The first statement is immediate by Lemmas 3.6 and 3.5. By Lemma 2.13,
(Rd, Jd, Rd) ∈ AT OP(G, ·), so for any x, y:

xd · yJd = (xy) · d.
Let c = 1/d, so cd = 1. Then Jd = LcRd by Lemma 3.3. So, if h, k ∈ H :

(hk)Jd = (c(hk)) · d = ((ch) k) · d = (ch)d · kJd = hJd · kJd
Hence, Jd restricted to H is an isomorphism.

The next lemma is used only for the proof of the theorem which follows it.

Lemma 3.10. If cd = 1, then the following equations hold; x denotes any element
of G:

R−1
c2 = RdL

2
dLcRdLc

Lc2R
−1
c2 = RdLcLdLcRdLc

LcR
−1
cx L

−1
c = R−1

x Rd
RdR(cx)dR

−1
d = Rx

LdLcRxL
−1
c L−1

d = R(xc)d

RdLcLxRc = Lxc
RdLcRc2 = RcLc

RdLdR
−1
xd L

−1
d R−1

d = R−1
x Rc

LdLcRxRcLc = LcRxc
RcRdLdLc = I.

(1)

Proof. For (1), we apply Lemma 3.1.1 and then Lemma 3.3 three times to get
R−1
c2 = L−1

c R−1
c LcR

−1
c = RdLdR

−1
d R−1

c LcR
−1
c = RdL

2
dLcLcR

−1
c = RdL

2
dLcRdLc.

For (2), first note by Lemma 3.3 that R−1
d LcR

−1
c = Lc; that is, (c(x/d))/c = cx.

Hence, by Lemma 3.1.2, L−1
c Lx/dLc = Lcx. Now, since 1/d = c, Lemma 3.1.3 im-

plies RdLxL−1
d R−1

d = L−1
c Lx/dLc, so RdLxL−1

d R−1
d = Lcx. Setting x = c, we have

RdLcL
−1
d R−1

d = Lc2 , and (2) now follows by using the value of R−1
c2 from (1). Equa-

tion (3) is immediate from Lemma 3.1.3, since c\1 = d. For (4), apply Lemma 3.1.2
to get RdRd\(xd)R

−1
d = Rx, but then d\(xd) = (cx)d because RdL−1

d = LcRd by
Lemma 3.3. For (5), Lemma 3.3 implies RcRdLdLc = I, so c(d((xc)d)) = x. Thus,
by 3.1.1, L−1

c L−1
d R(xc)dLdLc = L−1

c R−1
d Rd((xc)d)Lc = R−1

cd Rc(d((xc)d)) = Rx. For
(6), apply 3.1.1 and then 3.3 to get Lxc = LcR

−1
c LxRc = RdLcLxRc. For (7), ap-

ply 3.1.1 and then 3.3 to get RdLcRc2 = RdLcRcL
−1
c RcLc = RdR

−1
d RcLc = RcLc.

For (8), apply 3.1.3 and 3.1.4 to get RdLdR−1
xdL

−1
d R−1

d = RdR
−1
d\(xd)Rd\1R

−1
d =

R−1
x R1/d. To prove (9), we rewrite it as c(( (c(dz))x)c) = (cz)(xc), which is equiva-

lent to Lc(dz)RcLc = RcLcz. By 3.1.1 and 3.1.2, R−1
c Lc(dz)RcLc = L−1

c L(c(dz))cLc =
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L(zLdLcRcLcR−1
c ). But by Lemma 3.3, LdLcRcLcR−1

c = LdLcRcRdLc = Lc, so
R−1
c Lc(dz)RcLc = Lcz. Finally, equation (10) is immediate from Lemma 3.3.

The following theorem is important because it gives us a supply of elements of
the nucleus.

Theorem 3.11. If cd = 1 then dc is in the nucleus.

Proof. Fix c, d with cd = 1. By Lemma 3.1.4, R−1
y = R−1

x R−1
(xy)/xRx. Below, we

shall take the right side of this equation with x = c2, and apply Lemma 3.10 to
derive R−1

y = R−1
(dc)yRdc. This will imply that R(dc)y = RdcRy for every y, which

implies that dc is in the (middle) nucleus. In the following chain of equalities, the
comments on the right indicate the equation numbers from Lemma 3.10 used to
derive the equality with the next line:

R−1
y = R−1

c2 · (R((c2y)/c2))−1 · Rc2 = R−1
c2 · (R(yLc2R

−1
c2 ))−1 · Rc2 = //1, 2

RdL
2
dLcRdLc · (R(yRdLcLdLcRdLc))−1 ·Rc2 = //3

RdL
2
dLcRd · (R(yRdLcLdLcRd))−1 ·RdLcRc2 = //4

RdL
2
dLc · (R(yRdLcLd))−1 · R2

dLcRc2 = //5
RdLd · (R(yRdLcLdRcRd))−1 · LdLcR2

dLcRc2 = //6, 7
RdLd · (R(((dc)y)d))−1 · LdLcRdRcLc = //8
(R((dc)y))−1 · RcRdLdLdLcRdRcLc = //9
R−1

(dc)y · RcRdLdLcRdc = //10
R−1

(dc)y · Rdc.

Of course, it is possible that cd = dc = 1 (that is, (1/c) = (c\1)), in which case
Theorem 3.11 tells us nothing, but in that case we shall see (Lemma 3.20 below)
that the subloop generated by c is a group. First, some preliminaries:

Lemma 3.12. If cd = dc = 1, then:
1. L−1

c RdLc = R−1
c and R−1

c LdRc = L−1
c .

2. Ec = RcRd = (LcLd)−1 ∈ AUT (G, ·), and it commutes with each of Lc, Ld,
Rc, and Rd.

3. L−1
c RcLc = (Rc)2Rd and R−1

c LcRc = (Lc)2Ld.
4. Rc2 = (Rc)3Rd and Lc2 = (Lc)3Ld.
5. Jc = LdRc ; J−1

c = RdLc ; Jd = LcRd ; J−1
d = RcLd.

Proof. (1), (2), and (5) follow from Lemmas 3.3 and 3.4. To prove (3): (2) implies
(Rc)2Rd = L−1

c L−1
d Rc; then use L−1

d Rc = RcLc, which follows from (1). Then (4)
follows from L−1

c RcLc = R−1
c Rc2 (by Lemma 3.1.1), and (3).

The commutation relations in this lemma give a pretty good description of the
group generated by Rc, Rd, Lc, Ld in the case that cd = dc = 1. First, some general
notation:

Definition 3.13. If X ⊆ G, then 〈X〉 is the subloop of G generated by X . If
x, y ∈ G, then 〈x〉 = 〈{x}〉 and 〈x, y〉 = 〈{x, y}〉.

Definition 3.14. If X ⊆ G, then: R(X) is the subgroup of RII(G, ·) generated
by all the Ra for a ∈ X ; L(X) is the subgroup of LII(G, ·) generated by all the La
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for a ∈ X ; I(X) is the subgroup of II(G, ·) generated by both the La and Ra for
all a ∈ X .

Lemma 3.15. If H is a subloop of G, then both R(H) and L(H) are normal
subgroups of I(H).

Proof. By Lemma 3.1.1.

Lemma 3.16. If X ⊆ G, then II(〈X〉) = II(X).

Proof. It is enough to show that Rxy, Rx\y, Ry/x, Lxy, Lx\y, Ly/x are always in the
subgroup generated by Rx, Ry, Lx, Ly. For Rxy, just apply Lemma 3.1.1. For Rx\y,
use 3.1.1 again to get that L−1

x Rx\yLx = R−1
x Ry, Then, for Ry/x, use 3.1.2, which

implies R−1
x Ry/xRx = Rx\y.

We now describe II(〈c〉) = II({c}) in the case that 1/c = c\1. Although this
group is generated by Lc and Rc, it is simpler to express the group in terms of
Lc, Rc, Ec, since Ec is in the center.

Lemma 3.17. If cd = dc = 1, then the following hold; r, s, t, i, j, k, n are arbitrary
integers:

1. Ec is in the center of II(〈c〉).
2. R−jc LtcR

j
c = E−jtc Ltc.

3. ErcR
s
cL

t
c · EicRjcLkc = Er+i−jtc Rs+jc Lt+kc .

4. (ErcR
s
cL

t
c)
−1 = E−st−rc R−sc L−tc .

5. Every element of II(〈c〉) is of the form ErcR
s
cL

t
c for some r, s, t.

6. II(〈c〉) is abelian iff Ec = I iff RcLc = LcRc.
7. Jnc = E

(n−1)n/2
c RncL

−n
c .

8. Rd = EcR
−1
c and Ld = E−1

c L−1
c .

Proof. Items (1) and (8) are by Lemma 3.12.2. For item (2) in the case j = t = 1,
apply 3.12.3 and 3.12.2. The rest follows by an easy computation.

We next describe Ry and Ly for y ∈ 〈c〉 in the case that 1/c = c\1.

Definition 3.18. For any integer n, let xn = 1Rnx .

So, xn+1 = xn · x for all n, positive and negative. It turns out, by the next
lemma, that if 1/c = c\1 then all possible associations of cn are equal.

Lemma 3.19. If 1/c = c\1, then the following hold; m,n are arbitrary integers:

1. Rcn = E
(n−1)n/2
c Rnc and Lcn = E

−(n−1)n/2
c Lnc .

2. cm · cn = cm+n.
3. Ecn = En

2

c .
4. Jcn = E

(n−1)n/2
c Jnc .

Proof. By Lemma 3.1.1, Lcn+1 = LcR
−1
c LcnRc, so Lcn = RcL

−1
c Lcn+1R−1

c . Using
this, the formula for Lcn may be verified by induction for n ≥ 0 (going up), and
for n ≤ 0 (going down), using the commutation relations in Lemma 3.17. Also
by 3.1.1, Rcn+1 = RcnL

−1
cn RcLcn , from which the formula for Rcn may be verified,

using the formula for Lcn . This proves (1)
Now, (2) is immediate from the definition of cn, since 1Ec = 1 . By (2), c

generates a cyclic subgroup, so cn\1 = c−n. Items (3) and (4) are now immediate
from the definitions of E and J , using Lemma 3.17 and (1).
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Lemma 3.20. For any c ∈ G, the following are equivalent:
1. 〈c〉 is a group.
2. 1/c = c\1.
3. c · c2 = c2 · c.

Proof. (1)⇒ (3) is trivial, and (2)⇒ (1) is immediate from Lemma 3.19. To prove
(3)⇒ (2), assume (3) and cd = 1; we must prove dc = 1. By (3) and RCC of
Definition 1.1:

c · (c2d) = (cc2)/c = (c2c)/c = c2

so c2d = c. Using this and LCC,

c = (cc)d = (cd)(d\(cd)) = d\1
so dc = 1.

It now follows immediately by Theorem 3.11 that:

Theorem 3.21. If N(G, ·) = {1}, then 〈x〉 is a group for every x.

If 〈c〉 is a group, then either 〈c〉 ∼= Z or 〈c〉 ∼= Zm for some positive integer m
(where, of course, Z and Zm denote the additive groups of integers and integers
modulo m). In the Zm case:

Lemma 3.22. If 〈c〉 ∼= Zm, then
1. Emc = I.
2. R2m

c = L2m
c = J2m

c = I.
3. If m is odd, then Rmc = Lmc = Jmc = I.
4. If m is even, then Rmc = Lmc = Jmc = E

m/2
c .

Proof. Applying Lemma 3.19.1, Rc = Rcm+1 = E
(m+1)m/2
c Rm+1

c , so

Em(m+1)/2
c Rmc = I.(1)

Again by 3.19.1,

I = Rcm = E(m−1)m/2
c Rmc(2)

Dividing (1) by (2) yields Emc = I. Then, squaring (1) or (2) yields R2m
c = I.

Likewise, L2m
c = I and J2m

c = I (squaring Lemma 3.19.4 with n = m).
If m is odd, then m | (m− 1)m/2, so (2) yields Rmc = I, while if m is even, then

(m− 1)m/2 ≡ m/2 (mod m), so E±m/2c = R±mc . Likewise for Lc and Jc.

Note that Example 2.20 provides an example (where c is the element α) where
m = 2 and Rc and Lc have order 4, not 2. We do have enough information about
elements of order 2 to prove the following.

Lemma 3.23. If a2 = b2 = (ab)2 = 1, then ab = ba.

Proof. Using LCC of Definition 1.1 with x = y = ab and z = b, we have b =
[(ab)b] · [b\((ab)b)]. Then, since L2

b = R2
b :

b = [b(ba)] · [ba](1)

Using RCC of Definition 1.1 with x = y = a and z = b, we have b = [(ba)/b] · [ba].
Then, since LbR−1

b = RbLb (by Lemma 3.12.1):

b = [b(ab)] · [ba](2)

By (1), (2), and cancelling, ba = ab.
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Note that even in groups, no two of a2 = 1 , b2 = 1 , (ab)2 = 1 is sufficient to
derive ab = ba.

Corollary 3.24. If x2 = 1 for all x, then G is a commutative group.

Proof. Since the center is contained in the nucleus (Lemma 2.15), every commuta-
tive CC-loop is a group.

Actually, it is well-known that every commutative G-loop is a group, and it is
also easy to check that the equation x2 = 1 implies commutativity in G-loops.

Now, the last few results emphasized the situation where 〈x〉 is a group. If in
fact every 〈x, y〉 is a group (that is, the loop is diassociative), then the loop is an
extra loop, and we may appeal to some results already in the literature.

Definition 3.25. G is flexible iff RxLx = LxRx for every x.

This is usually written as the equation, x(yx) = (xy)x. A flexible CC-loop is an
extra loop [11], and hence a Moufang loop [7][8]. By Moufang’s Theorem [1], every
Moufang loop is diassociative. Hence:

Proposition 3.26. G satisfies the flexible law iff G it is diassociative.

In an extra loop, the square of every element is in the nucleus [8]; in particular,
the nucleus is non-trivial (since if x2 = 1 for all x, then G must be a group by
Corollary 3.24). We do not know if a CC-loop must have a non-trivial nucleus.

Lemma 3.27. For any c, the following are equivalent:
1. RcLc = LcRc.
2. Ec = I.
3. 〈c〉 is a nuclear subloop of G.

Proof. (1)⇒ (2): Let d = c\1, so cd = 1. Then c(dc) = (cd)c = c, so dc = 1.
Then, applying Lemma 3.12.1, RdLc = LcR

−1
c = R−1

c Lc, so Rd = R−1
c , whence

Ec = RcRd = I.
(2)⇒ (3): Let d = c\1, so cd = 1 and Ec = RcRd. Then d = dEc = (dc)d,

so dc = 1. Hence 〈c〉 is a group. By Lemma 3.19.1, Rcn = Rnc for each n, which
implies that 〈c〉 is nuclear.

(3)⇒ (1): Since 〈c〉 is a group, let d = c−1. By “nuclear”, I = Rcd = RcRd, so
applying Lemma 3.12.3, RcLc = Lc(Rc)2Rd = LcRc.

Note that (1/c) = (c\1) is not an equivalent. The CC-loop of Example 2.20
satisfies (1/x) = (x\1) for every x but it is not an extra loop (since it is not
diassociative).

Finally, the next two lemmas will be used to prove that certain elements which
“should” be distinct (judging by group theory) really are distinct in CC-loops.

Lemma 3.28. If A and C are subloops of G, with A ∩ C = {1} and C ∼= Zp for
some prime p, then the elements ac for a ∈ A and c ∈ C are all distinct.

Proof. Suppose we have ac = a′c′, with a, a′ ∈ A, and c, c′ ∈ C. We need to prove
that a = a′ and c = c′. This is clear (using A ∩ C = {1}) if any one of a, a′, c, c′

is 1, so assume none of them is. Then c′ = cn for some n, and the case n = 1 is
trivial, so assume 1 < n < p, and we derive a contradiction.

By Lemma 3.1.1, LxR−1
xy = R−1

y LxR
−1
x , so (xz)/(xy) = (x(z/y))/x. This implies

that (xci)/(xcj) = (xci−j)/x = (xci+k)/(xcj+k), for any integers i, j, k. Since
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ac = a′cn, we have a = (a′cn)/c = (a′/c)cn (applying Lemma 3.4), so a/a′ =
((a′/c)cn)/((a′/c)c1) = ((a′/c)cn+k)/((a′/c)c1+k) for any k. Using this, we show,
by induction on r ≥ 0, that ((a′/c)c1+r(n−1)) ∈ A. Now, fix r such that r · (n−1) ≡
−1 (mod p), and we have a′/c ∈ A, so c ∈ A, a contradiction.

Lemma 3.29. Suppose that 〈c〉 ∼= Zp for some prime p, and aEicR
`
c = aEjcR

m
c .

Then ` ≡ m (mod p).

Proof. It is sufficient to derive a contradiction from aEicR
`
c = a along with 0 < ` < p.

If p = 2, this is easy (using Ec = R2
c and E2

c = R4
c = I), so assume p > 2.

If i = 0, then aR`c = a plus Rpc = I yields ac = aRc = a, a contradiction, so
assume 0 < i < p.

For any n with 0 < n < p, fix b ∈ 〈c〉 such that bn = c. Applying Lemma 3.19,
Rc = E

(n−1)n/2
b Rnb and Ec = En

2

b , so

a = aEicR
`
c = aE

(2in2+`n2−`n)/2
b R`nb .

If (in Zp) 2i+ ` 6= 0, we may choose n = `/(2i+ `), so that aR`nb = a, yielding a
contradiction as in the i = 0 case.

If (in Zp) 2i+` = 0, we have aEinb R
−2in
b = a, and we may choose n = 1/i, yielding

aEbR
−2
b = a, or (ab−1)b = (ab)b. Cancelling yields b−1 = b, a contradiction, since

p > 2.

4. Structure Theorems

Throughout this section, (G, ·) always denotes a conjugacy closed loop. We use
the general isotopy results in Section 2, together with the equations in Section 3,
to analyze the structure of conjugacy closed loops.

We begin with some conditions which imply that the size of a subloop divides
the size of the loop. Bruck ([1], p. 92) discusses such “Lagrange theorems” for loops
in general.

Definition 4.1. Let H be a subloop of G. H is a characteristic subloop iff every
automorphism of G takes H into H . H is an isolated subloop iff H is nuclear and
HJx = H for all x ∈ G.

In groups, “characteristic” has its usual meaning, while “isolated” is equivalent
to “normal”. We use “isolated” here because “normal” already has a somewhat
different meaning [1] in loops. Note that the nucleus is both characteristic and
isolated.

Lemma 4.2. If H is either a nuclear or a characteristic subloop of G, then any
two right cosets, Ha and Hb, are either equal or disjoint.

Proof. It is sufficient to prove that Ha = Hd for all d ∈ Ha, since then, if Ha∩Hb
contains any element, d, we have Ha = Hd = Hb. So, fix d = ha ∈ Ha.

To prove H(ha) ⊆ Ha, fix k(ha) ∈ H(ha). Let x = (k(ha))/a, so k(ha) = xa; we
need to show that x ∈ H . If H is nuclear, then x = kh ∈ H . If H is characteristic,
then note that x/h = kRhaR

−1
a R−1

h ∈ H , since RhaR
−1
a R−1

h ∈ AUT (G, ·) by
Lemma 2.14. Hence, x ∈ H .

To prove Ha ⊆ H(ha), fix ka ∈ Ha. Let x = (ka)/(ha), so ka = x(ha); we need
to show that x ∈ H . If H is nuclear, then x = kh−1 ∈ H . If H is characteristic,
note that x = (((k/h)h)a)/(ha) ∈ H since RhRaR−1

ha ∈ AUT (G, ·).
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Note that the conclusion to Lemma 4.2 fails for the CC-loop in Example 2.20.
Even in cases where the cosets fail to be disjoint, one can sometime prove a Lagrange
theorem by analyzing the orbits under right multiplication, using the following
lemma and its corollary:

Lemma 4.3. If H is a commutative subgroup of G and |H | = pn, where p is a
prime and n is finite, then |R(H)| = pr and |L(H)| = p` for some finite r, ` ≥ n.

Proof. R(H) and L(H) are commutative groups (by Lemma 3.4), and are finitely
generated (by definition), and the order of each of their generators is a power of p
(by Lemma 3.22). Thus, |R(H)| and |L(H)| are powers of p. The Ra, for a ∈ H ,
are all distinct, which implies that r ≥ n; likewise, ` ≥ n.

Corollary 4.4. If H is a commutative subgroup of G and |H | = pn, where p is a
prime and n is finite, then for each b ∈ G, the sizes of the sets {bα : α ∈ R(H)}
and {bα : α ∈ L(H)} are both powers of p and at least pn.

Proof. They are powers of p by Lemma 4.3, and they are at least pn because the
elements bRa = ba, for a ∈ H , are all distinct.

Theorem 4.5. If G is finite and H is a subloop of G, then |G| is divisible by |H |
if any of the following hold.

1. H is a group and the Sylow p-subgroups of H are commutative for each prime
p.

2. H is a nuclear subloop of G.
3. H is a characteristic subloop of G.

Proof. For (1), it is enough to prove this when H is an abelian p-group, in which
case, the result follows from Corollary 4.4, since the size of each orbit under R(H)
is divisible by |H |. For (2) and (3), the result is immediate by Lemma 4.2

A special case of (2) or of (3) is that |G| is divisible by the size of the nucleus,
but this fact is true in all loops [1].

Corollary 4.6. If 1 < |G| < ∞, then G contains an isomorphic copy of Zp for
some prime factor p of G.

Proof. By Theorem 3.21, either the nucleus is non-trivial or every 〈x〉 is a group.

Corollary 4.7. If |G| = p, where p is prime, then G ∼= Zp.

Of course, by Wilson [18], this corollary is true of all G-loops.
As with normal subgroups of groups,

Lemma 4.8. If H is an isolated subloop of G, then aH = Ha for all a ∈ G.

If a subloop H is both characteristic and isolated, then one can form a quotient
G/H as follows. In general, for S, T ⊆ H , define their set product , S · T = {st : s ∈
S and t ∈ T }.

Lemma 4.9. Suppose H is a characteristic and isolated subloop of G. Then (Ha) ·
(Hb) = H(ab) for every a, b.

Proof. Since H is a characteristic subloop, the automorphism RxRyR
−1
xy takes H

to H , so, as in the proof of Lemma 4.2, (Hx) · y = H(xy) for any x, y. Likewise,
x · (yH) = (xy)H . Now, H(ab) = (Ha)b ⊆ (Ha) · (Hb). To prove equality, fix
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h, k ∈ H , and we prove (ha) · (kb) ∈ H(ab). Since (Ha) · (kb) = H(a(kb)), fix
h′ ∈ H such that (ha) · (kb) = h′ · (a · (kb)), and then, by Lemma 4.8, fix k′ ∈ H
such that kb = bk′. Then (ha) · (kb) = h′ · (a · (bk′)). Now, a(bk′) ∈ a(bH) = H(ab),
so fix k′′ ∈ H so that a(bk′) = k′′(ab). Then, since H is nuclear, (ha) · (kb) =
(h′k′′) · (ab) ∈ H(ab)

Definition 4.10. If H is a characteristic and isolated subloop of G, then G/H =
{Ha : a ∈ G}; the product operation on G/H is set product.

Lemma 4.11. If H is a characteristic and isolated subloop of G, then G/H is a
CC-loop and the map x 7→ Hx is a homomorphism from G onto G/H with kernel
H.

Lemma 4.13 will produce some examples of characteristic and isolated subloops.

Lemma 4.12. Suppose that 〈h〉 ∼= Zp, p is prime, and |G| is finite. Then there is
a subloop K ⊆ G such that |K| ≡ |G| (mod p2) and 〈h〉 is a nuclear subloop of K.

Proof. Let H = 〈h〉, and let K = {x ∈ G : xEh = x}. Then H ⊆ K ⊆ G. H is a
nuclear subloop of K by Lemma 3.27. For any b ∈ G, let Ob = {bα : α ∈ R(H)} be
the orbit of b under R(H). Since Eh ∈ R(H) and R(H) is commutative (Lemma
3.4), each Ob is either contained in or disjoint from K. Furthermore, by Corollary
4.4, |Ob| is always a power of p. Now, suppose b /∈ K, so bEh 6= b. Then Ob
contains b, bh, (bh)h, . . . , bRp−1

h , plus bEh, all of which are distinct by Lemma 3.29,
so p2 | |Ob|. Hence, |K| ≡ |G| (mod p2).

Now, we already know that p divides |G|; this lemma is trivial when |G| ≡
p (mod p2), since we could just take K = 〈h〉. When |G| ≤ p2, then K must equal
G. We shall look in detail at the situation |G| = p2 later.

Lemma 4.13. If 〈h〉 ∼= Zp, where p is prime and p2 > |G|, then 〈h〉 is a charac-
teristic and isolated subgroup of G.

Proof. It is nuclear by Lemma 4.12. To prove it is isolated, fix any x ∈ G, and let
K = 〈h〉Jx; we must show that K = 〈h〉. Now K ∼= 〈h〉 ∼= Zp by Lemma 3.9. By
Lemma 3.28, if K ∩〈h〉 = {1}, then |G| ≥ p2; hence, fix a 6= 1 in K ∩〈h〉. But then
K = 〈a〉 = 〈h〉. The same argument shows that 〈h〉 is characteristic.

The following theorem yields a weak version of the fact that the order of a finite
group of exponent p is a power of p:

Theorem 4.14. Suppose that |G| = pm, where p is prime and m−1 is not divisible
by p, and suppose that 〈a〉 ∼= Zp for every a 6= 1. Then G contains an isomorphic
copy of Zp × Zp, and |G| is divisible by p2.

Proof. That |G| is divisible by p2 is immediate by Theorem 4.5, once we produce
the Zp × Zp. To do that, first iterate Lemma 4.12 a finite number of times to
produce a subloop K ⊆ G such that |K| ≡ |G| (mod p2) and 〈x〉 is a nuclear
subloop of K for every x ∈ K. Then, Ex = I for every x ∈ K, so K is flexible, and
hence diassociative (by Proposition 3.26). |K| > p because m − 1 is not divisible
by p. Fix a, b ∈ K with b 6= 1 and a /∈ 〈b〉. Then H = 〈a, b〉 is a group of exponent
p, and has size greater than p, so it contains a copy of Zp × Zp.

What are the non-group CC-loops of order seven or less? By Wilson [18] (or
Corollary 4.7), these cannot have prime order, and it is easy to see by inspection
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that all loops of order four are commutative, and hence groups if they are CC, so
that leaves order six. In that case, we have the CC-loop from Table 1, and that is
the only one, as is true in general for orders 2q, where q is an odd prime, by the
following theorem:

Theorem 4.15. If q is an odd prime, then there are exactly three CC-loops of
order 2q, exactly two of which are groups.

Proof. Assume |G| = 2q. Let N = N(G, ·). Then |N | divides 2q
First note that |N | cannot be 2: If |N | = 2, then N is also the center by Corollary

2.18. Say N = {1, c}. Fix a different from 1 and c. Note that 〈a〉 cannot be a
group, since if 〈a〉 ∼= Zn, then 〈a, c〉 ∼= Zn × Z2. By Theorem 4.5, 2n must divide
2q, which means that G ∼= Zq × Z2, so |N | = 2q, a contradiction. Let b = a\1,
so ab = 1. Then ba 6= 1 (by Lemma 3.20), but ba ∈ N (by Theorem 3.11), so
ba = c. Let Ea = RaRb ∈ AUT (G, ·) (see Lemma 3.3); note that bEa = cb. Since
Ea is an automorphism and c is in the center, bkEa = (bEa)k = bkck for each k
(we are defining bk by Definition 3.18). Now G/N is a CC-loop of size q and hence
isomorphic to Zq, so bq ∈ N . Since q is odd, bqEa = bqc, which is impossible, since
Ea is the identity on N .

So, |N | is either 1, q, or 2q.
Next, note that G has some subloop isomorphic to Zq: This is clear if |N | is q

or 2q, so suppose that |N | = 1 (which will later turn out to be impossible). Then,
by Theorems 3.21 and 4.5, each 〈x〉 is a group of some order dividing 2q, and we
cannot have that every x has order 2 (or G would be a Boolean group (by Corollary
3.24) and hence have size a power of 2), so 〈x〉 ∼= Zq for some x.

Now, fix a subloop H isomorphic to Zq. Then H is a a characteristic and isolated
subgroup of G (by Lemma 4.13), and G/H ∼= Z2 (by Lemma 4.11). There are now
three cases:

Case 1 : x2 = 1 for all x /∈ H . Then, for all x /∈ H : R2
x = L2

x = J2
x = Ex, and

Jx � H ∈ AUT (H) (by Lemmas 3.22 and 3.9). Fix some c /∈ H and some h ∈ H
with h 6= 1. Then the general element of G is of the form hnci, with n ∈ Zq and
i ∈ Z2. Now fix r ∈ Zq such that hJc = hr, so hc = chr.

Now, consider an arbitrary element x = hnc /∈ H . Then hx = xhs for some s.
But then hx = hn+1c = chnr+r and xhs = (hnc)hs = (chnr)hs = chnr+s, so r = s.
Thus, for all x /∈ H , we have Jx = Jc, and hence hEx = hr

2
.

To compute r:

hr
2

= hEc = (hc)c = (hc)(chrh−r) = (hc)((hc)h−r) = (h−r)Ehc = h−r
3

so r = −1. Hence, for all x /∈ H : R2
x = L2

x = J2
x = Ex = I, since Ex is the identity

on 〈{x} ∪H〉 = G. Hence, Ex = I for all x ∈ G, since H is a nuclear subgroup.
Now we compute:

(hmc)(hnc) = (hmc)(ch−n) = (hmc)((ch−m)hm−n)

(hmc)((hmc)hm−n) = (hm−n)Ehmc = hm−n.

Similarly:

hm · hn = hm+n, (hmc) · hn = hm−nc,
hm · (hnc) = hm+nc, (hmc) · (hnc) = hm−n,

which we recognize as the usual description of the non-abelian group of order 2q as
a semidirect product of Zq by Z2.
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Case 2 : 〈x〉 is a group for all x /∈ H , but not all such x have order 2. Fix c /∈ H
with c2 6= 1. Then the only possibility is that c has order 2q, so that 〈c〉 = G ∼= Z2q.

Case 3 : Neither Case 1 nor Case 2 holds. Then fix c such that 〈c〉 is not a group.
Then c /∈ H but c2 ∈ H ; however, c2 6= 1. Let h = c2; then H = 〈h〉. Let d = c\1,
so that cd = 1. Now dc 6= 1 (otherwise, 〈c〉 would be a group by Lemma 3.20), but
dc ∈ H (since G/H ∼= Z2), and dc ∈ N (by Theorem 3.11). Hence, N = H .

As in Case 1, the general element of G is of the form hnci, with n ∈ Zq and
i ∈ {0, 1}. Again, Jc � H ∈ AUT (H), but now we apply Corollary 3.7 to get
(Jc)2 � H = (Jc2) � H = I � H . Now, Jc � H cannot be the identity (since
c\(c2 ·c) = c2 would imply c2 ·c = c ·c2, making 〈c〉 a group by Lemma 3.20). Thus,
the only possibility is that hJc = h−1, so that hnc = ch−n. Now, using H = N and
c2 = h, we easily compute:

hm · hn = hm+n, (hmc) · hn = hm−nc,
hm · (hnc) = hm+nc, (hmc) · (hnc) = h1+m−n.

It is also easy to verify that these equations indeed yield a CC-loop, which is then
the only non-group CC-loop of order 2q.

Regarding Case 3: Note that we have x2 = h for each x /∈ 〈h〉, as might be
expected from examining Table 1. To verify that this really defines a CC-loop, one
may plug the equations directly into LCC and RCC, but it is simpler to just verify
that [G : N ] = 2, and then quote Theorem 3.1 of Goodaire and Robinson [10],
which says that this implies the loop is CC. The actual construction of this loop is
due to Wilson [19].

Next, consider CC-loops of order pq, where p ≤ q are odd primes, with q− 1 not
divisible by p. In the case p = q, a non-group CC-loop of order p2 was described in
[10]. In the case p < q, we shall show there is none at all; since [10] already proved
that any such loop must have a trivial nucleus, it is not surprising that we begin
by proving that the nucleus is non-trivial.

Lemma 4.16. Suppose that |G| = pq, where p ≤ q are odd primes and q− 1 is not
divisible by p. If G is not a group, then N(G, ·) = Z(G, ·), and is isomorphic to
either Zp or Zq.

Proof. Consider the three possibilities for N = N(G, ·).
If N ∼= Zq, then G/N is a CC-loop of size p, so G/N ∼= Zp. Then, in view of

Corollary 3.7, every Jx defines an automorphism of N of order p. But, since p does
not divide q − 1, the only such automorphism is the identity, so every Jx is the
identity on N , which means that N is contained in the center. The same argument
works if N ∼= Zp.

Finally, suppose N = {1}. Then, by Theorems 3.21 and 4.5, each 〈x〉 is a group
of order either p or q. Furthermore, the orders of these 〈x〉 cannot all be the same,
or Theorem 4.14 would yield a contradiction; hence p < q and some 〈x〉 have order
p and some 〈x〉 have order q. Now, fix a with 〈a〉 ∼= Zq.

Then this 〈a〉 is characteristic and isolated by Lemma 4.13. In particular, 〈a〉 is
nuclear, so by Lemma 3.9, each Jx defines an automorphism of 〈a〉. Furthermore,
if x /∈ 〈a〉, then xp = 1, so Jpx = I by Lemma 3.22.3, so Jx � 〈a〉 is the identity.
Thus, a commutes with all elements of G, so that a ∈ N(G) by Lemma 2.15, a
contradiction.
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The proof of the following theorem is patterned after Goodaire and Robinson
[9][10], from which (1) is immediate, given Lemma 4.16.

Theorem 4.17. Suppose that p ≤ q are odd primes and q− 1 is not divisible by p.
Then:

1. p < q: The only CC-loop of order pq is Zpq.
2. p = q: There are exactly three CC-loops of order p2 besides Zp2 and Zp ×Zp.

Proof. Assume that G has order pq and is not a group. Do not assume p ≤ q, but
assume that q − 1 is not divisible by p, and p − 1 is not divisible by q, so that by
Lemma 4.16, we may assume that N = N(G, ·) = Z(G, ·) ∼= Zq. We shall now
derive a multiplication table in the case p = q, and a contradiction in the case
p 6= q.

Recall that xk denotes 1Rkx, so xk · x = xk+1. Note that G/N is a CC-loop of
order p, and hence a group, so that for any x, i, j, there is a y ∈ N = Z such that
xi · xj = xi+jy = yxi+j .

For now, fix any b /∈ N . Then b · b2 6= b3, since otherwise 〈b〉 would be a group
(by Lemma 3.20), which would imply that G ∼= Zp×Zq. Let c = (b · b2)/b3, so that
b · b2 = c · b3 = b3 · c. Note that c ∈ N and c 6= 1, so that N = Z = 〈c〉.

For any natural numbers r, s, define ε(r, s) in the field Zq so that br · bs =
br+s · cε(r,s). Note that ε(0, s) = ε(r, 0) = ε(r, 1) = 0 for any r, s, and our choice of
c implies ε(1, 2) = 1.

For any s, let αs = RsbR
−1
bs ∈ AUT (G, ·) (applying Corollary 2.7). Note that

cαs = c. Define δ(s) ∈ Zq so that bαs = bs+1/bs = b · c−δ(s). Since αs is an
automorphism, brαs = bs+r/bs = brc−rδ(s). That is, we must have (in Zq) ε(r, s) =
r · δ(s). Note that δ(0) = δ(1) = 0 and δ(2) = 1.

Since bp ∈ N , we have bp = bpα2 = bpc−p, which is impossible unless p = q,
establishing (1) of the theorem.

We now proceed to examine the possibilities in order q2. Fix µ ∈ Zq such that
bq = cµ. Every element of G is of the form brci for some r, i, and this representation
is unique if we take 0 ≤ r < q and i ∈ Zq. We have a product on these elements
defined by

brci · bscj =
{
br+s · ci+j+ε(r,s) if r + s < q,

br+s−q · ci+j+ε(r,s)+µ if r + s ≥ q.
Furthermore, it is easy to see that these equations define a loop of size q2 (based
on the formal symbols brci). It remains to investigate what values of µ and the
ε(r, s) = r · δ(s) really lead to a CC-loop, and what the possible isomorphism types
are.

To verify that the loop is conjugacy-closed, we simply insert three loop elements
into the equations LCC and RCC. A straightforward computation shows that
LCC is automatically satisfied, and RCC reduces to

s δ(r) + t δ(r + s) = t δ(r) + s δ(r + t) + t δ(s)− s δ(t).(R)

Setting r = t = 1 yields δ(1 + s) = s + δ(s), so δ(s) = s(s − 1)/2 (mod q), and
hence ε(r, t) = rt(t− 1)/2 (mod q). It is easy to check that this expression satisfies
(R). So, we have one CC-loop for every choice of µ ∈ Zq.

Now, the choice of b /∈ N determined c ∈ N and then µ. Let us now see what
other values of µ could arise from a different choice, b̂ /∈ N . This b̂ defines ĉ so
that b̂ · b̂2 = b̂3 · ĉ, and then µ̂ ∈ Zq such that b̂q = ĉµ̂. Since the value of µ̂
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only depends on which coset of the nucleus b̂ lies in, we may as well assume that
b̂ = bn, where 1 ≤ n < q. Then b̂ · b̂2 = b3ncε(n,n)+ε(n,2n) and b̂3 = b̂2 · b̂ =
b3ncε(n,n)+ε(2n,n), so ĉ = cε(n,2n)−ε(2n,n) = cn

3
. Also, b̂q = (bn)q = bnqcν = cnµcν ,

where ν = ε(n, n) + ε(2n, n) + . . . ε((q− 1)n, n) = (q(q − 1)/2) · nδ(n) ≡ 0 (mod q).
Thus, µ̂ = µ/n2, so that the various possible values of µ obtainable from a given
loop are all in the ratio of a perfect square in the field Zq. It follows that, up
to isomorphism, the three possibilities for µ are 0, 1 (equivalently, any non-zero
square), and any non-square.

If q is an odd prime and µ ∈ Zq, let C(q, µ) denote the CC-loop of order q2

constructed as above. For any loop, (G, ·), we may form the mirror, (G, ◦), by
letting x◦y = y ·x. A straightforward computation shows that for q > 3, the mirror
of C(q, µ) is isomorphic to C(q,−µ), whereas for q = 3, the mirror of C(q, µ) is
isomorphic to C(q,−µ+ 2).

5. G-Loops

It is reasonable to ask to what extent the results of this paper generalize to G-
loops. The results of this section put some limits on this. In Section 3, we collected
a number of results true in all CC-loops. These were mainly equations, or else
implications between equations, such as

∀xyz[xy = yx ⇒ x(yz) = y(xz)](1)

from Lemma 3.4. Here, we show that the only facts of this sort true in all G-loops
are true in all loops.

An equation is an expression of the form σ = τ , where σ and τ are terms
composed of variables, 1, and the functions \, /, ·. A universal sentence is a logical
sentence of the form ∀x1 · · ·xnψ, where ψ is an equation or a Boolean combination
of equations. Thus, (1) above is a universal sentence.

Theorem 5.1. If ϕ is a universal sentence true in all G-loops, then ϕ is true in
all loops.

Bruck [1] (p. 57) asked if one could find “necessary and sufficient conditions
upon the loop G in order that” G be a G-loop. By Theorem 5.1, such conditions
cannot be just universal statements. We do not know whether such conditions can
be first-order. Of course, there are first-order logical statements true in all G-loops
which are not true in all loops. An example of such a statement is

∀xy[xy = yx] ⇒ ∀xyz[x(yz) = y(xz)].(2)

But, by Theorem 5.1, for a general G-loop, one cannot pin down by a formula
exactly which elements need to commute in order to conclude x(yz) = y(xz).

In proving Theorem 5.1, note first that by the following lemma, it is sufficient
to consider sentences about · and 1:

Lemma 5.2. If ϕ is a universal sentence, then there is a universal sentence ϕ′

such that ϕ′ does not use \ or /, and such that [ϕ ⇐⇒ ϕ′] is true in all loops.

Proof. Replace all occurrences of \ and /, using the observation that in loops,
ψ(x/y) is equivalent to ∀z[(zy = x) ⇒ ψ(z)].
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Let us call an incomplete binary system a pair (G, ◦), where G is a non-empty
set, ◦ : dom(◦) → G is a function, and dom(◦) ⊆ G × G. We use “x ◦ y = z”
to abbreviate “(x, y) ∈ dom(◦) ∧ x ◦ y = z”. This incomplete binary system is an
incomplete loop iff it contains an element 1 which makes the loop properties hold
as far as ◦ is defined; more formally:

∀x ∈ G[x ◦ 1 = 1 ◦ x = x],
∀xyz ∈ G[x ◦ y = x ◦ z ⇒ y = z],
∀xyz ∈ G[y ◦ x = z ◦ x ⇒ y = z].

Note that if (G, ◦) is a finite incomplete loop and dom(◦) is all of G×G, then (G, ◦)
is a loop. By a theorem of Evans, every finite incomplete loop may be extended to
a loop on a possibly larger finite set:

Lemma 5.3 (Evans [6]). If (G, ◦) is an incomplete loop, then there is a loop (H, ∗)
such that G ⊆ H, |H | ≤ 2 · |G|, and ∗ agrees with ◦ wherever ◦ is defined.

Now, any universal sentence which fails in some loop fails because of a finite
number of elements – that is, because of some finite incomplete subloop. This
incomplete subloop may then be extended to a finite loop, where the sentence still
fails. Hence,

Lemma 5.4. If ϕ is a universal sentence true in all finite loops, then ϕ is true in
all loops.

Definition 5.5. A loop (G, ·) is saturated iff
• G is countably infinite.
• Every finitely generated subloop of G is finite.
• Whenever (K, ∗) is a finite loop, H is a subloop of K, and i is an injective

homomorphism from H into G, there is an extension of i to an injective
homomorphism from K into G.

The notion of “saturated” is borrowed from model theory [3], but it has a some-
what different meaning there. Note in particular, with H = {1}, that a saturated
loop contains isomorphic copies of all finite loops. So,

Lemma 5.6. If the loop (G, ·) is saturated, then every universal sentence true in
(G, ·) is true in all loops.

Furthermore, the saturated loop is unique.

Lemma 5.7. There is exactly one saturated loop, up to isomorphism.

Lemma 5.8. The saturated loop is a G-loop.

Proof. It is sufficient to prove that every loop isotope of a saturated loop is satu-
rated.

Proof of Theorem 5.1. If ϕ is true in all G-loops, then it is true in the saturated
loop, and hence in all loops.

6. Concluding Remarks

We feel that we have demonstrated that CC-loops have a non-trivial structure,
but we have not settled all possible questions. Following Theorems 4.15 and 4.17,
one might try to characterize all CC-loops of sizes pq or p3 (for primes p, q). A more
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general question is whether the nucleus must be non-trivial. In fact, as pointed out
in [10], in all known examples the loop modulo the nucleus is a commutative group.

In another direction, one might try to develop a structure theory of G-loops.
It is still unknown whether there is a non-group G-loop of order 15. Perhaps one
might extend the results of Section 5 to show that “there is no structure theory”,
but it is not clear exactly what such a statement would mean.

We do not know whether it pays to study the consequences of LCC and RCC
separately. Related to this, one might study LCC and RCC quasigroups. Note
that in a quasigroup, RCC implies that there is a left identity (apply RCC with
zy = z to show that yx = x for all x), so that every CC quasigroup is a loop.
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