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THE STRUCTURE OF CONJUGACY CLOSED LOOPS

KENNETH KUNEN

ABSTRACT. We study structure theorems for the conjugacy closed (CC-) loops,
a specific variety of G-loops (loops isomorphic to all their loop isotopes). These
theorems give a description all such loops of small order. For example, if p and
q are primes, p < ¢, and g — 1 is not divisible by p, then the only CC-loop of
order pq is the cyclic group of order pg. For any prime g > 2, there is exactly
one non-group CC-loop in order 2¢, and there are exactly three in order ¢2.
We also derive a number of equations valid in all CC-loops. By contrast, every
equation valid in all G-loops is valid in all loops.

1. INTRODUCTION

A quasigroup is a system Q = (G,-) such that G is a non-empty set and -
is a binary function on G satisfying Vay3lz(zz = y) and VayIlz(zx = y). In a
quasigroup, we may name the z as a function of x,y and define left division, \, and
right division, /, by

By cancellation, and setting y = zu or y = ux, we have also
(2) z\(x - u) = u, (u-z)/z=u.

As usual, equations written this way with variables are understood to be universally
quantified. Quasigroups are often defined to be systems of the form Q = (G, -, \,/)
satisfying (1) and (2); this lets us define the notion in a purely equational way, with-
out existential quantifiers. A Jloop is a quasigroup which has an identity element,
1, satisfying Va(z1 = 1o = z). See the books [I], [5], [16] for general background
and references to the literature on quasigroups and loops.

There are probably no interesting results about the class of all loops, since it is
too broad; for example, there are already 109 loops of order six [2|. However, there
has been much study of specific classes of loops. Most well-known are the groups,
which are the associative loops. For these, there are many structure theorems,
which enable one to enumerate easily the groups of small orders; for example, there
are only two groups of order six. In this paper, we look at structure theorems for
conjugacy closed loops.

Received by the editors September 27, 1996 and, in revised form, March 13, 1998.

2000 Mathematics Subject Classification. Primary 20N05; Secondary 03C05, 08 A05.

Key words and phrases. Conjugacy closed loop, G-loop, isotopy.

Author supported by NSF Grants CCR-9503445 and DMS-9704520. The author is grateful to
the referee for many helpful comments on the original draft of this paper.

(©2000 American Mathematical Society
2889

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2890 KENNETH KUNEN

Definition 1.1. A loop is conjugacy closed (or a CC-loop) iff it satisfies the two
identities:

RCOC: z(yz) = ((2y)/2)(z), LCC: (zy)z = (22)(2\(y2))-

Actually, every quasigroup satisfying both these identities must be a loop; see
Section Clearly, every group is a CC-loop. The reason for the terminology
“conjugacy closed” is explained in Remark [3.2

The reader unfamiliar with previous work on these loops [10][L1][17] may not
see why this particular variety of loop is interesting. One motivation for studying
CC-loops is that they arise naturally in the study of isotopy, and the CC-loops form
a natural variety of G-loops (= isotopy-isomorphy loops), as we explain in Section
Pl which collects some useful results and definitions from the literature. The other
is that the CC-loops have a non-trivial structure theory, described in Section [ see
also Goodaire and Robinson [1{], where the notion originated. Using this structure
theory, one may compute the CC-loops of small order. For example, if p is an odd
prime, we show (Theorem ELTH) that the only non-group CC-loop of order 2p is the
one constructed by R. L. Wilson, Jr. [T9]. For p = 3, this loop is displayed in Table
M Also (Theorem EIT), in order p?, there are exactly three non-group CC-loops,
constructed by the method of Goodaire and Robinson [10)].

TABLE 1. A CC-Loop
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By another result of Wilson [18], the only G-loop, and hence the only CC-loop,
of prime order p is the cyclic group of order p. We show (Theorem [£.17)) that for
CC-loops, the same is true for orders pg, where p < ¢ are primes with ¢ — 1 not
divisible by p. Note that for these pq, the fact that any group of order pq must be
cyclic is an easy exercise in using the Sylow theorems. The structure theory for
CC-loops uses combinatorial arguments similar to those used in the proof of the
Sylow theorems.

If p < q are primes and ¢—1 is divisible by p, then in order pq, there are CC-loops
which are not groups (see Corollary 3.3.1 of [I0]), as well as non-abelian groups.

The Moufang loops, whose structure is already widely discussed in the literature
[1[4], are always diassociative (that is, every two elements generate a group) by
Moufang’s Theorem. The CC-loops need not even be power associative (that is,
every single element generates a group); for example, in Table [, the single ele-
ment 4 generates the whole loop. It is shown in [II] that the CC-loops which are
diassociative (equivalently, Moufang) are the extra loops studied by Fenyves [7][8].

It might seem that the structure for non-power-associative loops might be in-
tractable, but we show (Theorem BIT)) that in a CC-loop, zy = 1 implies that yx
is in the nucleus. From this we shall conclude (Theorem BZI)) that either the loop
is power associative or the nucleus is non-trivial. In particular (Corollary EEd), this
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THE STRUCTURE OF CONJUGACY CLOSED LOOPS 2891

implies that if G is any finite CC-loop, then for some prime p dividing |G|, G has
a subloop H isomorphic to the cyclic group of order p. In Table[d |G| =6, p = 3,
and H = {1, 2, 3}; there are no subloops of order 2, as one might have hoped from
group theory.

Our structure theory succeeds through the study of loop automorphisms. In
a group, the inner automorphisms are related to failures of commutativity. In
the same way, CC-loops possess a family of automorphisms related to failures of
associativity. This is described in more detail in Section 2l In Section Bl we derive
a number of equations and implications between equations used in the structure
theory in Section [ The division between these two sections is a bit arbitrary, but
in general, the results of Section [B] hold for all CC-loops, whereas Section H uses
counting arguments to prove theorems about finite CC-loops.

One might ask to what extent the results of this paper hold for G-loops in general.
In Section [ we show that every equation (in fact, every universal statement) true
in all G-loops is true in all loops, so that we do not have any analog to the results
in Section Bl

In developing this work, we have found it very useful to use the automated
reasoning tools OTTER [15], programmed by W. W. McCune, and SEM [20], pro-
grammed by J. Zhang and H. Zhang. OTTER is used in deriving equations from
other equations, and was instrumental in producing many of the results in Section
Bl OTTER’s proofs are simply sequences of fifty or so intermediate equations, and
seem at first to have little intuitive content, but following the method of previ-
ous work [I2][I3][I4], we have rephrased OTTER’s proofs using more conceptual
notions, such as the action of automorphisms. SEM is used to construct finite
examples. For example, the CC-loops given in Table [l and Example 2220l were con-
structed using SEM. Once one has such an example, it is usually possible to describe
it in a more conceptual way; for example, the loop in Table [I] can be recognized
as the one already constructed by Wilson (see [19] or Theorem EI0), and we have
described the one in Example as a semidirect product. We originally tried to
use SEM to construct a non-group CC-loop of order 15, but this failed, proving that
there was no such loop. We then found the proof in this paper (Theorem E17),
which does not rely on a computer search and which generalizes to other orders of
the form pg. Besides the results explicitly presented in this paper, OTTER and
SEM were very useful for quick experimentation and for checking out (often false)
conjectures.

2. Isotory AND G-LOOPS

Throughout this section, (G, -) always denotes a loop. The theory of isotopy lets
us associate with (G,-) a number of permutation groups. One may then apply
familiar methods from group theory to study GG. We begin with the autotopy group
(see [I, p. 112).

Definition 2.1. SYM(G) denotes the group of all permutations of the set G;
I € SYM(G) is the identity element. A7 OP(G,-) is the set of triples (o, 3,7) in
(SYM(G))? such that

Vi,y,z € Glea -y = (zy)y].
It is easy to see that A7 OP(G) is a subgroup of (SYM(G))3.
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2892 KENNETH KUNEN

Definition 2.2. Define AUT(G,-),LII(G,-),RTI(G,),IZ(G,) by
a€ AUT(G,)) <= (a,a,a) € ATOP(G,),
a € LIT(G,)) <= 3F¢eSYM(G)[(p,a,a) e ATOP(G,-)],
a € RIZI(G,) <<= I eSIYMG)|[(a,9,a) e ATOP(G,")],
a €II(G,) < 3o, € SYM(G)[(¢,¢,a) € ATOP(G,-)].
)

So, AUT (G, -) is the group of automorphisms of (G, -). Bryant and Schneider
[2] called TT (G -) the group of (G,-). It is immediate from the definitions that:

Lemma 2.3. Each of the sets AUT (G, ), LIT(G,-),RIZ(G,-),TZ(G,") is a sub-
group of SYM(G). Furthermore,
AUT (G, ) C LTI(G,-)NRIZ(G,-),
LIT(G,-)URII(G, ) CIZ(G,").

Another family of elements of SYM(G) is given by left and right multiplications
by elements of G:

Definition 2.4. For each a € G, define L, = L(a) and R, = R(a) in SYM(G) by
xL, =a-x, R, = x-a.
These are related to the autotopy group by
Lemma 2.5. Suppose that (a, 3,7) € ATOP(G,-). Letb= 18" and a = la~*

Then for all z,y: za = (zb)y, yB = (ay)y, and (xzb)y - (ay)y = (zy)y. Thus,
o= Rb’)/; 6 = La’)/; and (RbPYa La’)/vﬁy) € ATOP(G, )

Proof. Use b3 =1 and then acv = 1 in the definition (1)) of AT OP. O
Now, applying this lemma to the definition of LZZ, RZZ,1T:

Lemma 2.6. If o € SYM(G), then:
1. a € TZ(G, ) iff for some a,b € G: (Rper, Lo, ) € ATOP(G,-), in which
case (ab)a =1
2. a € LTI(G,") iff for some b € G: (Rpa,, ) € ATOP(G,-), in which case
b must be 1a !
3. a € RIZ(G,") zﬁfor some a € G: (o, Lo, ) € ATOP(G,-), in which case
a must be 1a
Corollary 2.7. AUT (G, ) ={a € LTI(G,") :la=1} ={a € RTI(G,") : la =
1}.
For every loop, we may define the left nucleus (Vy), the middle nucleus (N,),
the right nucleus (N,), and the center (Z2):

Definition 2.8. For any loop (G, -) and a € G:
a € N\(G,") it Vz,y € Gla (xy) (ax)y].
a € N,(G,-) iff Vz,y € G[z(ay) = (za)y].
a € N,(G,-) iff Vz,y € G [z(ya) = (zy)a].
a € Zy(G, )1ffo€G[:ca: azx].
N(G, ) = Na(G,-) N Nu(G,) NN, (G, ).
Z(G,) = N(G, )ﬁZo(G )

It will turn out (Lemma ZTH) that Zo(G, ) = Z(G, ) for CC-loops. It is easy to
verify the following equivalents, in terms of autotopy.
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Lemma 2.9. For any loop (G, -):
N \G,)={a€eG: (LsI,L,) € ATOP(G,-)}.
N.(G,)={a€ G:(R;' L, I) € ATOP(G,")}.
N,(G,")={a€eG:(I,R,,R,) € ATOP(G,")}.
Zo(G,-) ={ae€G:L,=R,}.

Corollary 27 can fail for ZZ(G, -); that is, one can have o € ZZ(G,-) and la = 1
without a being an automorphism of the loop, but such an a must be an automor-
phism of the nucleus.

Lemma 2.10. Suppose that o € TZ(G,-) and laa = 1. Then:

1. If either u € Ny or v € N,, then ua - va = (uv)a.
2. a | Ny € .AUT(N)\,)
3. a| N, € AUT(N,,).

Proof. Fix a,b as in Lemma 26[1] So, (zb)a - (ay)a = (xy)a for all z,y. Equiv-
alently, ua - va = ((u/b) - (a\v))a for all u,v. Since (ab)a = 1 = la, ab = 1.
Now suppose that u € Ny. Then (ua)b = u(ab) = u, so ua = u/b. Hence,
ua - va = ((ua) - (a\v))a = (u- (a(a\v)))a = (uv)a. The mirror of this argument
works for v € N,.

So, o maps Ny isomorphically onto its range. To prove (2)), we need (Ny)a = Ny.
Now, if u € Ny, then applying ([I), (va- (zb)a) - (ay)a = (uzb)a- (ay)a = (uay)a =
ua - (zy)a = ua - ((xb)a - (ay)a). Since (zb)a and (ay)a can be arbitrary elements
of G, this proves that ua € Ny, so (Nx)a C Ny. Applying this argument to a~*
shows that (Ny)a = Nj. O

So far, this whole discussion could be vacuous, since it is not clear whether
IZ(G,-) contains anything besides the identity permutation, I. However, in G-
loops, £IT and RIZI are large enough to make Corollary B and Lemma 210
useful for producing automorphisms.

Definition 2.11. A loop G is a G-loop iff for each a,b € G, there is an a €
SYM(G) such that (Rpar, Lo, ) € ATOP(G,+); that is, (zb)a - (ay)a = (zy)a
for all z,y € G.

This a will be in ZZ (G, ) by Lemma 28Il Furthermore, the special cases where
a =1 or b= 1 will provide us with a supply of permutations in LZZ(G,-) and
RIZ(G,-) by Lemma 2:6]2 and Lemma 2:G[Bl Actually, by E. L. Wilson [17], being
a G-loop is equivalent to these special cases:
Lemma 2.12. A loop (G, -) is a G-loop iff both

o for each b € G, there is a § € SYM(G) such that (Rpf3, 5, 3) € ATOP(G,-),

and
o for each a € G, there is a v € SYM(G) such that (v, Lq7y,v) € ATOP(G, ).

Proof. For the non-trivial direction, fix a,b € G. First fix § € LZZ(G,-) such that
b= 1871, so that (xb)3-yB = (zy)B for all z,y. Then, fix « € RTZ(G,-) such that
(x)y - (cy)y = (xy)y for all z,y, where ¢ = (ab)B. Let a = 7. Then for all z,y:
(zy)a = ((xb)B-yB)y = (xb)By-((ab)B-yB)y = (xb)B-((ay)B)y = (zb)a-(ay)a. O

Definition ZTT] has the following interpretation: Let uw = xb and v = ay, so that
we have ua - va = ((u/b) - (a\v))a. Thus, if we define a new product, o, so that
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uov = (u/b) - (a\v), then o is another loop operation on G, with identity a - b, and
a is an isomorphism from (G, -) to (G, o). This o is called a principal loop isotope.
That is, the G-loops are those loops which are isomorphic to all their principal loop
isotopes, and « € ZZ(G, ) iff v is an isomorphism onto a principal loop isotope.

In a G-loop, Definition 2.11] “seems” to pair an a € ZZ(G, -) with an (a,b) € G?,
but this “correspondence” is not a function. By Bryant and Schneider [I] and
R. L. Wilson, Jr. [18], each « has |N,| corresponding (a,b), and each (a,b) has
|AUT (G, -)| corresponding . Hence, |G|* - |[AUT(G,")| = |IZ(G,")| - IN,|. When
|G| is prime, this implies that |[N,| = |G|, so that G is a group. Unfortunately, if
|G| is not prime, this type of analysis does not yield much information for G-loops
in general.

We now consider “natural G-loops”, in which the 8 and v from Lemma 212
have some simple definition. So, fix an a € G, and consider the requirement that
there be a v € SYM(G) such that (v, Ly7y,v) € ATOP(G,-). A group is a G-loop,
since we may let v be either L, or R, !. It is natural to consider loops in which
one of these choices works as well. The first is uninteresting, since it holds only
in groups. If v = L', we have (L1, L,L;t, L;') € ATOP(G,-); equivalently,
(La,I,Lg) € ATOP(G,-), sothat a € Nx(G,-) (by Lemmal[Zd). If this holds for all
a, then G is a group. Now, if v = R, we have (R}, L R, ', R, ') € ATOP(G,");
equivalently, (R,, R,L,', R,) € ATOP(G,-); translating this to an equation, we
get precisely equation LCC from Definition [TI

Likewise, consider the requirement that for each b € G, there be a 8 € SYM(G)
such that (R0, 8, 3) € ATOP(G,-). In groups, (3 could be either L, ' or R;'. In
any loop, if G is always Rb_l7 then the loop is a group, whereas if 3 is always Lb_l7
then we have each (LbRb_l,Lb,Lb) € ATOP(G,-), which yields equation RCC.
Hence:

Lemma 2.13. A loop (G, ) is conjugacy closed iff both R, € RIZ(G,-) and L, €
LIT(G,-) for each a € G. If (G, ") is conjugacy closed, then (G,-) is a G-loop, and
both (Ra, RaL; ', R,) and (LoR; ', La, L) are in ATOP(G,-).

We may now take various products from RZZ(G,-) and LIZ(G, ) to produce
automorphisms. In particular, as in [10]:

Lemma 2.14. If G is conjugacy closed, then for each a,b € G, both RaRbR(:bl and
LaLbLb_a1 are automorphisms of G.

Proof. By Lemma 213 R,RyR,;" € RIZ(G,-). It is then an automorphism by
Corollary 27. O

Note that in every loop, the associative law holds iff RaRbR(:bl =1 for all a,b.
However, in CC-loops, the fact that these are automorphisms lets us use automor-
phism arguments to study non-associative CC-loops in the same way that inner
automorphisms are used to study non-commutative groups. Every commutative
CC-loop is a group; more generally, for any CC-loop, the three nuclei coincide [10]
and contain Zy (see Definition 2.8]).

Lemma 2.15. For any CC-loop (G,-): Z(G, ) = Zy(G,-) C N(G,-) = NA(G,") =
NM(Ga ) = Np(Ga )

Proof. Apply Lemma 29 and Lemma [2.I3) plus the fact that ATOP(G,") is a
group. O
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Definition 2.16. For any a € G, let J, = R,L;! and let E, = RoRa\1-

In a group, E, = I and J, is an inner automorphism. In a CC-loop, F, is an
automorphism (by Lemma [2.14); J, need not be an automorphism of the loop, but
it does define an automorphism of the nucleus [10] (apply Lemma [2.I0} note that
Jo €TI(G,-) and 1J, =1).

Corollary 2.17. For any CC-loop (G, "), let N = N(G,-). Then E, € AUT (G, "),
and J, | N € AUT(N,-), for each a € G.

Corollary 2.18. For any CC-loop (G,-), if IN(G,-)| =2 then Z(G, ) = N(G, ).

Proof. Since the only automorphism of N(G,-) is the identity, it follows that for
each a € G, and each z € N(G, ), xL,R; ! = z, so ax = za. O

Table[is an example of a CC-loop in which the nucleus has size 3 and the center
has size 1. Nevertheless, we shall see later (Lemma FTd) that the method of proof
of Corollary 21§ is useful for proving the center to be non-trivial in cases where
the nucleus has size greater than two, if we have some further information about
the orders of these J,.

Some further examples of non-group CC-loops are described in Goodaire and
Robinson [I0]. In addition, the following, which is a modification of the semidirect
product construction in groups, will be useful later as a source of counterexamples:

Lemma 2.19. Suppose that G = H x A, where (H,+) and (A,+) are abelian
groups, and we define a product on G by

(h,(E) ! (kay) = (h+k9m +iz,y7 :c—f—y)
where the 0, for x € A, and the iy, for z,y € A, satisfy:

1. Each 0, is an automorphism of H and 0,1y = 0,0,.
2. Fach iy, is an element of H and i, 0 = i9,y = 0.
3. For each x,y, z:

by b *ioyt: = oy —lyz +iz0y +iyats
loy tloty: = Izt iy,zeﬂc - iz7y9x +iatz,y-
Then G is a CC-loop. Furthermore, {h € H : Vy[hb, = h]} x {0} C Z(G) and
H x {0} C N(G).

Proof. Note that by item (), we also have §_, = (6,)~! and 6y = I. Using this
plus item (@), it is easy to see that (0, 0) is the identity element of G. To prove that
G is a loop, and to identify \ and /, we may solve the equation (h,x)- (k,y) = (¢, 2)
for (k,x) or for (h,y) to obtain:

(h,x)\(l,z) = (({—h—tg,-0)0_z, z—x),

(£,2)/(kyy) = (E=kb:y —izyy, 2—Y)
We compute the product of three elements as:
(h,x) - [(k,y) - (6,2)] = (h+kOy+0p1y+iy.0s+ipyts, T+Yy+ 2),
[(hyz) - (k,y)] - (,z) = (h+kOy+ 01y +ipy+ivtyz, T+Y+2).

Note that these are equal iff 45y + tp4y,» = %y 200 + ie,y+2, Which holds whenever
at least one of x,y, z is 0 (applying item (@) and 6y = I), so that H x {0} C N(G).
Likewise, using the definition of -, any element of the form (h,0) is in the center iff
h8, = h for all y.
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Now, equations RCC and LCC require:

RCC: (h,z)-[(ky) - (6,2)] = [((hz)(k,y)) / (h, )] - [(h, 2) (£ 2)];
LCC: [(hyz)- (k)] - (6:2) = [(h,2) (€, 2)] - [(€,2) \ (R, y)(€, 2))].

The right-hand sides of these are:

RCC: (h+kby 4+ l0pty + iny — iyz+ iz :0y +lyars, T+ y+2),
LCC : (h+ kO +L0pyy+in . +iy 05 — iz 90z +intey, o+y+2).

Thus, to get RCC and LCC, we need precisely item (B). O

Note that if i, , = 0 for all x,y, then G is a group, and the construction reduces
to the standard semidirect product. The following use of Lemma 219 to get a
non-group G will be useful later:

Example 2.20. In Lemma [Z19, take (H,+) = (A, +) & Za X Zo, where H =
{0,p,q,s} and A= {0, a,b,c}. Define 8, and iy, by:

— Yy —

iy |0 a b ¢
0 (0 O 0 O
T a 0 p 0 ¢
TbH |0 p 0 p
Le |00 s 0

Then G = H x A is a 16-element CC-loop satisfying the equation (1/x) = (z\1),
with a 4-element nucleus, H x {0}, and a 2-element center, {0, s} x {0}. This loop
contains «, 8 such that aa = 1 but a(af) # 0 and (fa)a # 3; furthermore, the
cosets, () - 8 and (a) - af, are neither equal nor disjoint.

Proof. G is a CC-loop by Lemma[2.19} the tedium of verifying item (3) there may
be alleviated somewhat by noting that the equations are trivially true if one of
x,y,z is 0, so that there are only 3% = 27 cases to verify, not 4% = 64. It is clear
from the proof of Lemma [2ZT9 that an element (k,y) is in N,(G) iff

Vazlio,y + laty,z = iy2bo + io,y+2]
which implies in particular

Vz[i(w +laty,z = lyz + ia,y+Z]-

For y = a and y = b, this is refuted by z = b, and for y = ¢, this is refuted
by z = ¢. Hence, the only possible elements of the nucleus have form (k,0), so
N(G) = H x {0}. Furthermore, (k,0) cannot be in the center unless k6, = k for
all y, so Z(G) = {0, s} x {0}.

The equation (1/x) = (z\1) is immediate from the formulas for / and \ derived
in the proof of Lemma [2.19

Finally, let & = (0,¢) and 8 = (0,b). Then aa = (0,0), 6 (s,a) and
alaf) = (s,b) # [. Also, fa = (p,a) and (Ba)a = (s,b) # (. Furthermore,
(@) B N (a)-af = {B,0B} N {af, a(aB)} = {af}. O
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3. SOME USEFUL EQUATIONS

Throughout this section, (G, -) always denotes a conjugacy closed loop. We col-
lect here a number of equations and implications between equations which G must
satisfy. Often (but not always), it is more transparent to state and prove equations
in terms of permutations. For example, in Lemma [2ZT4] the fact that RaRbR;b1 is
an automorphism could be expressed as the equation (((za)b)/ab) - (((ya)b)/ab) =
((((zy)a)b)/ab) and then derived directly from equations LCC and RCC' of Def-
inition [Tl but this derivation would be a bit messy and obscure. We begin by
re-stating the definition of “conjugacy closed” in terms of conjugations.

Lemma 3.1. For any x,y :

L;'RyL, = R;'R,, and R;'LyR,=L;'L,,.
L;lLny = L(:cy)/:c and R;lRny = Rx\(yx).
LoRyL;' = R\ Ry and  RyLyR;' =1Ly} Ly,
LILyL;1 = L;c\(y;c) and RIRyR;1 = R(xy)/x.

L A

Proof. The equation RCC' of Definition [I.I] asserts both R,L, = L.R;'R,, and
L,L., = L.L(.y),.; equivalently, L7'R,L, = R;'R,, and L;'L,L, = Ly
Renaming the variables, and applying also LCC, we get both () and (). To
obtain item (3]), use the conjugations in item () to compute L 1R;\11Rx\yLm and
R;lLf/ley/me. Item (4) is proved likewise from (2)). O

Remark 3.2. The equations () of Lemma [3.1] are easily seen to be equivalent to
RCC and LCC. Originally [10], a CC-loop was defined to be a loop in which the
left and right multiplications were closed under conjugations — that is, for all x,y,
there are u, v such that L;lLny =L, and R;lRny = R,. But this requires that
u = (xy)/z and v = z\(yz), so we retrieve equations (). Hence, our definition of
CC-loop is equivalent to the original one.

Lemma 3.3. If cd = 1, then L7'R4L. = R;', R;'L.Rq = L', and E.
R.Ry=L;'L;' € AUT(G,-). Furthermore, J;* = RqL. and J4 = L.Ry.

Proof. The first two equations are immediate from Lemma B0 These yield L.

R4L.R. = RqL;'R;"; cancelling the Ry, we get R.Rq = L;'L;"'. Finally, E, €
AUT (G, -) by Corollary 217 O
Lemma 3.4. For any x,y, xy = yx iff Ly Ly = LyL, iff R, Ry = RyR,.

Proof. By Lemma [3TIR1 O
Lemma 3.5. For any x,y, Ryy = Ro Ry iff Lo Ry = RyLy iff Loy = LyL,.

Proof. By Lemma [3.TII1 O
Lemma 3.6. For any x,y, Juoy = J.RyL. R, 'L, J,.

Proof. By Lemma and the definition of J. O

This lemma is most useful when the commutator, Ry, LR, 111 disappears.
That could happen in several ways. First, recall (Corollary ZT7) that J, defines
an automorphism of the nucleus. It follows that:

Corollary 3.7. Let N = N(G,-). Then JyJ, | N =J, [ N.
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Thus, the map = — J, yields a homomorphism from G into AUT (N,-). Next,
we may consider subloops other than the nucleus.

Definition 3.8. A subloop H of G is nuclear iff for all h,k € H, Ryx, = Ry Ry.

Note that the nucleus is nuclear and that every nuclear subloop must be a group.
In view of Lemma B3, the condition Rpr = RpRj could have been replaced by
Lth = RkLh, or by Lhk = LkLh

Lemma 3.9. If H is a nuclear subloop of G, then JpJi = Jni for all h,k € H,
and Jg maps H isomorphically onto HJy for all d € G.

Proof. The first statement is immediate by Lemmas B.6]land 3.5 By Lemma 2.13]
(Ra, Ja, Rq) € ATOP(G, ), so for any z,y:

xd - yJg = (zy) - d.
Let ¢ =1/d, so ¢d = 1. Then J; = L.Rq by Lemma B3] So, if h,k € H:
(hk)Ja = (c(hk)) -d = ((ch) k) -d = (ch)d - kJg = hdy - kJa
Hence, J; restricted to H is an isomorphism. [l
The next lemma is used only for the proof of the theorem which follows it.

Lemma 3.10. If cd = 1, then the following equations hold; x denotes any element

of G:
R, = R4L:L.R4L.
LR, = RyLcLgLcR4Le
L.RIL-Y = R;'Ry4
-Rd-R(cac)cl]%(;1 = R,
1) LqL.R,L7'LyY = Riepa
RchLch = Lxc
R4L.R.» = R.L,
RqL4R;L;'R;' = R;'R.

LchRchLc = LcRxc
R.RqL4sL. = 1.

Proof. For (1), we apply Lemma B and then Lemma three times to get
R.' = L7'R;7ML.R;Y = RyLyR;'R;'L.R; = RyL2L.L.R;' = RyL2L:RyL..
For (2), first note by Lemma [33 that R, 'L.R;* = L,; that is, (c(z/d))/c = cx.
Hence, by Lemma BTR] L;'L,/4Lc = Le,. Now, since 1/d = ¢, Lemma B3 im-
plies RyL,L;'R;" = L;'L,/4Lc, so RgL,L;'R;" = Le,. Setting « = ¢, we have
RchLglel = L2, and (2) now follows by using the value of Rc_z1 from (1). Equa-
tion (3) is immediate from Lemma B3] since c\1 = d. For (4), apply Lemma 3.1
to get Rde\(xd)Rgl = Ry, but then d\(zd) = (cz)d because RdL;1 = L.Rq by
Lemma 33 For (5), Lemma B3 implies R.R4L4L. = I, so ¢(d((zc)d)) = x. Thus,
by BNM L 'Ly Rzeyalale = L7 Ry RygweyayLe = Ry Rea((we)a)) = Re. For
(6), apply Bl and then to get Lye = LeR;1'LyR. = RyL.L,R.. For (7), ap-
ply B and then B3 to get RyL.R.2 = RdLCRCLC’lRCLC = RdR(;lRCLC =R.L..
For (8), apply BB and B to get RdeR;dnglel = RdR;\l(xd)Rd\lel =
R; 'Ry 4. To prove (9), we rewrite it as ¢(( (¢(dz)) z)c) = (cz)(xc), which is equiva-
lent t0 Le(gs) ReLe = ReLes. ByBIMandBOB Ry LegsyReLe = L7 Lic(as)yele =
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L(zLqL.R.L.R;'). But by Lemma B3] LyL.R.L.R;' = LqL.R.RqL. = L., so
R:'Le(az)ReLe = Le. Finally, equation (10) is immediate from Lemma B3 O

The following theorem is important because it gives us a supply of elements of
the nucleus.

Theorem 3.11. If cd =1 then dc is in the nucleus.

Proof. Fix ¢,d with ¢d = 1. By Lemma B[4 Ry’1 = R;IR(;ly)/xRx. Below, we
shall take the right side of this equation with z = ¢2, and apply Lemma B-I0 to
derive R/ L= R(_dlc)dec. This will imply that R4, = RacR, for every y, which
implies that dc is in the (middle) nucleus. In the following chain of equalities, the
comments on the right indicate the equation numbers from Lemma used to

derive the equality with the next line:

R, = R (R((y)/c*)) " Re = RG' - (R(yLaRR')) ™' - R = //1,2

c2

RdechRch (R(yRaLeLaL RyL:)) ™ - Ree = //3
RdLiLcRd . (R(deLchLcRd))_l -RyL.R.> = //4
RdLﬁLC - (R(yRaLcLg))™t - RZLCRCz = //5
RyLq - (R(yRyLcLaRcRg)) ™' - Lyl R3L.R.> = //6,7
Rde ! (R(((dc)y)d))_l : LdLCRdRCLc - //8
(R((de)y))~" - ReRaLaLaLcRaR:L. = //9
R(d})y - ReRgLaLcRge = //10
Rideyy - Fde:

O

Of course, it is possible that ¢d = de = 1 (that is, (1/c) = (¢\1)), in which case
Theorem B.11] tells us nothing, but in that case we shall see (Lemma [3.20] below)
that the subloop generated by c is a group. First, some preliminaries:

Lemma 3.12. Ifcd = dc =1, then:
1. L7'RyL. = R;Y and R;'LyR. = L1,
2. E. = ReRq = (L.Lqg)~' € AUT(G,"), and it commutes with each of L., Ly,
R, and Ry.
3. L7'R.L. = (R.)?Rq and R;'L.R. = (L.)?Lq.
4. Rcz = (RC)BRd and ch = (LC)3Ld,
5 Jo=LqR. ; J7' = RqL. ; Jo= L.Rq ; J;' = RcLa.

Proof. (@), @), and (B) follow from Lemmas[3.3 and B4 To prove @B): (@) implies
(R.)?Rq = L;'L;'R.; then use L' R. = R.L., which follows from (). Then ()
follows from L, 'R.L. = R;'R.> (by Lemma BII[]), and (3). O

The commutation relations in this lemma give a pretty good description of the
group generated by R., Ry, L., Lq in the case that cd = dc = 1. First, some general
notation:

Definition 3.13. If X C G, then (X) is the subloop of G generated by X. If
x,y € G, then (x) = ({z}) and (z,y) = ({z,y}).

Definition 3.14. If X C G, then: R(X) is the subgroup of RZZ(G,-) generated
by all the R, for a € X; L(X) is the subgroup of LIZ(G, -) generated by all the L,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2900 KENNETH KUNEN

for a € X; Z(X) is the subgroup of ZZ(G, -) generated by both the L, and R, for
alla € X.

Lemma 3.15. If H is a subloop of G, then both R(H) and L(H) are normal
subgroups of Z(H).

Proof. By Lemma 3111 O
Lemma 3.16. If X C G, then IZ((X)) = IZ(X).

Proof. Tt is enough to show that Ry, Ro\ys Ry/es Ly, La\y, Ly, are always in the
subgroup generated by R., Ry, Ly, L,. For Ry, just apply Lemma BTl For R,
use B.II again to get that L; 'R\, L. = R;'R,, Then, for R, ., use B2, which
implies Ry 'R/, Ry = Ry - g

We now describe ZZ({c)) = ZZ({c}) in the case that 1/c = ¢\1. Although this
group is generated by L. and R., it is simpler to express the group in terms of
L., R., E., since E. is in the center.

Lemma 3.17. If cd = dc = 1, then the following hold; r,s,t,1, j, k,n are arbitrary
integers:
1. E. is in the center of TZ({c)).

R(ijZRZ = Egthz.
. ErRsLt . EiRij _ Er+i—ths+th+k‘
. (échslcjt)—f :CE?—st—rC}%—sL—tC' ©
. Every element of TZ((c)) is of the form ETRSL. for some r,s,t.
. IZ({c)) is abelian iff E. = I iff R.L. = L.R,.

Jn = E(n—l)”/QRann
. c c c™ec -
8 Ry=E.R;' and Lg=E;'L;'.

Proof. Ttems () and (8) are by Lemma [3.12]2] For item (2) in the case j =t =1,
apply B.12B] and 3122l The rest follows by an easy computation. O

We next describe R, and L, for y € (c) in the case that 1/c = c\1I.

Definition 3.18. For any integer n, let " = 1R”.

So, z"*1 = 2™ . x for all n, positive and negative. It turns out, by the next
lemma, that if 1/c = ¢\1 then all possible associations of ¢ are equal.

Lemma 3.19. If1/c = c\1, then the following hold; m,n are arbitrary integers:
1. Ren = EU"2Rr  and  Len = E; 79210,
2. "= g"“r".
3. Ecn =E.
4. Jon = BUOM2

Proof. By Lemma B, Lot = LeR; ' LenRe, 80 Len = ReL;'Lenti R, Using
this, the formula for L.» may be verified by induction for n > 0 (going up), and
for n < 0 (going down), using the commutation relations in Lemma BI7 Also
by B, Rensr = Ren Lt RoLen, from which the formula for R.» may be verified,
using the formula for L.». This proves ([

Now, (@) is immediate from the definition of ¢”, since 1E. = 1. By (@), ¢
generates a cyclic subgroup, so ¢"\1 = ¢ ". Ttems @) and ) are now immediate

from the definitions of E and J, using Lemma B4 and (). O
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Lemma 3.20. For any c € G, the following are equivalent:

1. {c) is a group.

2. 1/e=c\1.

3.c-c2=c%-c.
Proof. (M) = @) is trivial, and @) = (@) is immediate from Lemma BT To prove
B) = @), assume @) and cd = 1; we must prove de = 1. By @) and RCC of
Definition [T}

c-(c?d) = (cc®)/c = (Pc))c =
so c2d = c. Using this and LCC,
¢ = (cc)d = (ed)(d\(cd)) = d\1

so dc = 1. O

It now follows immediately by Theorem B.I1l that:
Theorem 3.21. If N(G,-) = {1}, then (x) is a group for every x.

If {¢) is a group, then either (¢) = Z or (¢) ¥ Z,, for some positive integer m
(where, of course, Z and Z,, denote the additive groups of integers and integers
modulo m). In the Z,, case:

Lemma 3.22. If (¢) = Zyy,, then

1. Bl =1.

2. R?M™ = [?m = J?m =],

3. If m is odd, then R* = L)' = J" =1.

4. If m is even, then R* = L = J* = EM?,

Proof. Applying Lemma BT R. = Remi1 = Egmﬂ)m/QRZL“, S0

(1) Emm+D/2pm 1,
Again by B.19[]
(2) I = Rem = E(m=1m/2gm

Dividing (1) by (2) yields E™ = I. Then, squaring (1) or (2) yields R?™ = I.
Likewise, L?™ = I and J?™ = I (squaring Lemma BI3H with n = m).
If m is odd, then m | (m —1)m/2, so (2) yields R?* = I, while if m is even, then
(m—1)m/2 =m/2 (mod m), so B = R*™. Likewise for L. and J.. O
Note that Example 220 provides an example (where c¢ is the element «) where

m = 2 and R, and L. have order 4, not 2. We do have enough information about
elements of order 2 to prove the following.

Lemma 3.23. If > = b?> = (ab)? = 1, then ab = ba.

Proof. Using LCC' of Definition [Tl with x = y = ab and z = b, we have b =
[(ab)b] - [b\((ab)b)]. Then, since L} = R%:

(1) b = [b(ba)] - [ba]

Using RCC of Definition [[LI] with z = y = a and z = b, we have b = [(ba)/b] - [bal.
Then, since LbRb_1 = Ry Ly (by Lemma BT2):

(2) b= [b(ab)] - [ba]
By (1), (2), and cancelling, ba = ab. O
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Note that even in groups, no two of a®> =1, b = 1, (ab)? = 1 is sufficient to
derive ab = ba.

Corollary 3.24. If 22 =1 for all x, then G is a commutative group.

Proof. Since the center is contained in the nucleus (Lemma [ZT5]), every commuta-
tive CC-loop is a group. O

Actually, it is well-known that every commutative G-loop is a group, and it is
also easy to check that the equation 22 = 1 implies commutativity in G-loops.

Now, the last few results emphasized the situation where (x) is a group. If in
fact every (z,y) is a group (that is, the loop is diassociative), then the loop is an
exrtra loop, and we may appeal to some results already in the literature.

Definition 3.25. G is flexible iff R, L, = L, R, for every .

This is usually written as the equation, z(yx) = (zy)z. A flexible CC-loop is an
extra loop [11], and hence a Moufang loop [7][8]. By Moufang’s Theorem [I], every
Moufang loop is diassociative. Hence:

Proposition 3.26. G satisfies the flexible law iff G it is diassociative.

In an extra loop, the square of every element is in the nucleus [8]; in particular,
the nucleus is non-trivial (since if 22 = 1 for all z, then G must be a group by
Corollary B:24)). We do not know if a CC-loop must have a non-trivial nucleus.

Lemma 3.27. For any c, the following are equivalent:
1. R.L.=L.R..
2. BE.=1.
3. (c) is a nuclear subloop of G.

Proof. )= @): Let d = c\1, so cd = 1. Then ¢(dc) = (cd)c = ¢, so de = 1.
Then, applying Lemma BI2M R4L. = L.R;' = R;'L., so Ry = R_', whence
E.= R.Ry = I.

@)= @): Let d = c\1, so ¢d = 1 and E. = R.Rq. Then d = dE. = (de)d,
so dc = 1. Hence (c) is a group. By Lemma BI90 R.. = R? for each n, which
implies that (c) is nuclear.

B) = ([@): Since (c) is a group, let d = ¢~!. By “nuclear”, I = R.q = R.Rq, so

applying Lemma B12I3, R.L. = L.(R.)?Rq = L.R,. O

Note that (1/¢) = (c\1) is not an equivalent. The CC-loop of Example
satisfies (1/x) = (z\1) for every x but it is not an extra loop (since it is not
diassociative).

Finally, the next two lemmas will be used to prove that certain elements which
“should” be distinct (judging by group theory) really are distinct in CC-loops.

Lemma 3.28. If A and C are subloops of G, with AN C = {1} and C = Z,, for
some prime p, then the elements ac for a € A and ¢ € C are all distinct.

Proof. Suppose we have ac = da’c’, with a,a’ € A, and ¢, € C. We need to prove
that @ = ¢’ and ¢ = ¢/. This is clear (using AN C = {1}) if any one of a,d’, ¢, ¢
is 1, so assume none of them is. Then ¢’ = ¢" for some n, and the case n = 1 is
trivial, so assume 1 < n < p, and we derive a contradiction.

By LemmaBI L, R, = R, 'L.R;", so (xz)/(xy) = (x(z/y))/2. This implies
that (wc?)/(xc?) = (zc9)/x = (xc™F)/(xcdTk), for any integers 4,7, k. Since
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ac = a'c", we have a = (a’c")/c = (a’/c)c™ (applying Lemma B4, so a/a’ =
((a'/c)e™) /(' [e)ct) = ((a’[e)c™T*)/((a’ Je)ctTk) for any k. Using this, we show,
by induction on 7 > 0, that ((a’/c)c'+t""~1) € A. Now, fix r such that r-(n—1) =
—1 (mod p), and we have a’/c € A, so ¢ € A, a contradiction. O

Lemma 3.29. Suppose that (c) = 7Z,, for some prime p, and aE'R’ = aEJR™.
Then £ =m (mod p).

Proof. Tt is sufficient to derive a contradiction from a ELR’. = a along with 0 < ¢ < p.
If p = 2, this is easy (using E. = R? and E? = R} = I), so assume p > 2.

If i = 0, then aR’! = a plus R? = I yields ac = aR. = a, a contradiction, so
assume 0 < 7 < p.

For any n with 0 < n < p, fix b € {¢) such that " = ¢. Applying Lemma B.19]

R. = Eén_l)n/QRg and E. = EI?Q, o)
. .2 2
= aEéRﬁ _ aEZEQ'm +n —Zn)/QRﬁn.

If (in Z,) 2i + £ # 0, we may choose n = £/(2i+ {), so that aR{" = a, yielding a
contradiction as in the ¢ = 0 case.

If (in Z,) 2i+£ = 0, we have aFEj" R, " = a, and we may choose n = 1/i, yielding
aFyR; % = a, or (ab=')b = (ab)b. Cancelling yields b~! = b, a contradiction, since
p> 2. ([l

4. STRUCTURE THEOREMS

Throughout this section, (G, -) always denotes a conjugacy closed loop. We use
the general isotopy results in Section Bl together with the equations in Section B]
to analyze the structure of conjugacy closed loops.

We begin with some conditions which imply that the size of a subloop divides
the size of the loop. Bruck ([T], p. 92) discusses such “Lagrange theorems” for loops
in general.

Definition 4.1. Let H be a subloop of G. H is a characteristic subloop iff every
automorphism of G takes H into H. H is an isolated subloop iff H is nuclear and
HJ,=H for all x € G.

In groups, “characteristic” has its usual meaning, while “isolated” is equivalent
to “normal”. We use “isolated” here because “normal” already has a somewhat
different meaning [I] in loops. Note that the nucleus is both characteristic and
isolated.

Lemma 4.2. If H is either a nuclear or a characteristic subloop of G, then any
two right cosets, Ha and Hb, are either equal or disjoint.

Proof. 1t is sufficient to prove that Ha = Hd for all d € Ha, since then, if HaN Hb
contains any element, d, we have Ha = Hd = Hb. So, fix d = ha € Ha.

To prove H(ha) C Ha, fix k(ha) € H(ha). Let x = (k(ha))/a, so k(ha) = za; we
need to show that € H. If H is nuclear, then x = kh € H. If H is characteristic,
then note that xz/h = thaR(;lel € H, since RhaR(:lel € AUT(G,-) by
Lemma 214l Hence, x € H.

To prove Ha C H(ha), fix ka € Ha. Let © = (ka)/(ha), so ka = z(ha); we need
to show that z € H. If H is nuclear, then = kh™' € H. If H is characteristic,
note that « = (((k/h)h)a)/(ha) € H since R,R, R, ! € AUT(G,"). O
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Note that the conclusion to Lemma fails for the CC-loop in Example
Even in cases where the cosets fail to be disjoint, one can sometime prove a Lagrange
theorem by analyzing the orbits under right multiplication, using the following
lemma and its corollary:

Lemma 4.3. If H is a commutative subgroup of G and |H| = p™, where p is a
prime and n is finite, then |R(H)| = p" and |L(H)| = p® for some finite r, £ > n.

Proof. R(H) and L(H) are commutative groups (by Lemma [34)), and are finitely
generated (by definition), and the order of each of their generators is a power of p
(by Lemma [322). Thus, |R(H)| and |L(H)| are powers of p. The R,, for a € H,
are all distinct, which implies that r > n; likewise, £ > n. [l

Corollary 4.4. If H is a commutative subgroup of G and |H| = p™, where p is a
prime and n is finite, then for each b € G, the sizes of the sets {ba: a € R(H)}
and {ba: « € L(H)} are both powers of p and at least p™.

Proof. They are powers of p by Lemma [£.3] and they are at least p™ because the
elements bR, = ba, for a € H, are all distinct. [l

Theorem 4.5. If G is finite and H is a subloop of G, then |G| is divisible by |H|
if any of the following hold.
1. H is a group and the Sylow p-subgroups of H are commutative for each prime
p.
2. H 1is a nuclear subloop of G.
3. H is a characteristic subloop of G.

Proof. For (), it is enough to prove this when H is an abelian p-group, in which
case, the result follows from Corollary 4] since the size of each orbit under R(H)
is divisible by |H|. For (@) and (B)), the result is immediate by Lemma O

A special case of [@)) or of @) is that |G| is divisible by the size of the nucleus,
but this fact is true in all loops [].

Corollary 4.6. If 1 < |G| < oo, then G contains an isomorphic copy of Z, for
some prime factor p of G.

Proof. By TheoremB.21], either the nucleus is non-trivial or every (z) is a group. [
Corollary 4.7. If |G| = p, where p is prime, then G = Z,.

Of course, by Wilson [I8], this corollary is true of all G-loops.
As with normal subgroups of groups,

Lemma 4.8. If H is an isolated subloop of G, then aH = Ha for all a € G.

If a subloop H is both characteristic and isolated, then one can form a quotient
G/H as follows. In general, for S,T C H, define their set product, S-T = {st: s €
SandteT}.

Lemma 4.9. Suppose H is a characteristic and isolated subloop of G. Then (Ha)-
(Hb) = H(ab) for every a,b.

Proof. Since H is a characteristic subloop, the automorphism RnyR;yl takes H
to H, so, as in the proof of Lemma B2, (Hx) -y = H(xy) for any z,y. Likewise,
x-(yH) = (zy)H. Now, H(ab) = (Ha)b C (Ha) - (Hb). To prove equality, fix
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h,k € H, and we prove (ha) - (kb) € H(ab). Since (Ha) - (kb) = H(a(kb)), fix
B’ € H such that (ha) - (kb) = 1’ - (a - (kb)), and then, by Lemma I8 fix k' € H
such that kb = bk’. Then (ha)- (kb) = h'-(a- (bk')). Now, a(bk') € a(bH) = H(ab),
so fix k" € H so that a(bk’) = k”(ab). Then, since H is nuclear, (ha) - (kb) =
(W'E") - (ab) € H(ab) O

Definition 4.10. If H is a characteristic and isolated subloop of G, then G/H =
{Ha : a € G}; the product operation on G/H is set product.

Lemma 4.11. If H is a characteristic and isolated subloop of G, then G/H is a
CC-loop and the map x — Hx is a homomorphism from G onto G/H with kernel
H.

Lemma [ 13l will produce some examples of characteristic and isolated subloops.

Lemma 4.12. Suppose that (h) = 7Z,, p is prime, and |G| is finite. Then there is
a subloop K C G such that |[K| = |G| (mod p?) and (h) is a nuclear subloop of K.

Proof. Let H = (h), and let K = {z € G: zE, =x}. Then HC K CG. His a
nuclear subloop of K by LemmalB27 For any b € G, let Op = {ba: a« € R(H)} be
the orbit of b under R(H). Since Ej € R(H) and R(H) is commutative (Lemma
B4), each Oy is either contained in or disjoint from K. Furthermore, by Corollary
B4, |Op| is always a power of p. Now, suppose b ¢ K, so bE, # b. Then O,
contains b, bh, (bh)h, . .. ,bRZ_l, plus bE}, all of which are distinct by Lemma [3.:29]
so p? | |Op|. Hence, |K| = |G| (mod p?). O

Now, we already know that p divides |G|; this lemma is trivial when |G| =
p (mod p?), since we could just take K = (h). When |G| < p?, then K must equal
G. We shall look in detail at the situation |G| = p? later.

Lemma 4.13. If (h) = Z,, where p is prime and p* > |G|, then (h) is a charac-
teristic and isolated subgroup of G.

Proof. It is nuclear by Lemma[£12l To prove it is isolated, fix any = € G, and let
K = (h)J,; we must show that K = (h). Now K = (h) & Z, by Lemma 3.9 By
Lemma [3:28] if KN (h) = {1}, then |G| > p?; hence, fix a # 1 in K N (h). But then
K = {(a) = (h). The same argument shows that (h) is characteristic. O

The following theorem yields a weak version of the fact that the order of a finite
group of exponent p is a power of p:

Theorem 4.14. Suppose that |G| = pm, where p is prime and m—1 is not divisible
by p, and suppose that (a) = Z,, for every a # 1. Then G contains an isomorphic
copy of Ly x Ly, and |G| is divisible by p*.

Proof. That |G| is divisible by p? is immediate by Theorem [£H once we produce
the Z, x Z,. To do that, first iterate Lemma a finite number of times to
produce a subloop K C G such that |K| = |G| (mod p?) and (x) is a nuclear
subloop of K for every x € K. Then, E, = I for every z € K, so K is flexible, and
hence diassociative (by Proposition B.26]). |K| > p because m — 1 is not divisible
by p. Fix a,b € K with b # 1 and a ¢ (b). Then H = (a, b) is a group of exponent
p, and has size greater than p, so it contains a copy of Z, X Z,,. O

What are the non-group CC-loops of order seven or less? By Wilson [18] (or
Corollary A1), these cannot have prime order, and it is easy to see by inspection
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that all loops of order four are commutative, and hence groups if they are CC, so
that leaves order six. In that case, we have the CC-loop from Table[l], and that is
the only one, as is true in general for orders 2¢q, where ¢ is an odd prime, by the
following theorem:

Theorem 4.15. If q is an odd prime, then there are exactly three CC-loops of
order 2q, exactly two of which are groups.

Proof. Assume |G| =2q. Let N = N(G,-). Then |N| divides 2¢

First note that | N| cannot be 2: If [N| = 2, then N is also the center by Corollary
PTR Say N = {1,c}. Fix a different from 1 and c¢. Note that (a) cannot be a
group, since if {a) & Z,, then (a,c) = Z,, X Zs. By Theorem 5] 2n must divide
2q, which means that G = Z, x Zs, so |[N| = 2q, a contradiction. Let b = a\1,
so ab = 1. Then ba # 1 (by Lemma B20), but ba € N (by Theorem BTITl), so
ba = c. Let E, = R,Ry € AUT (G, ) (see Lemma B.3)); note that bE, = cb. Since
E, is an automorphism and c is in the center, b*E, = (bE,)* = b¥cF for each k
(we are defining b* by Definition BI8). Now G//N is a CC-loop of size ¢ and hence
isomorphic to Zg, so b? € N. Since q is odd, b?E, = bc, which is impossible, since
FE, is the identity on N.

So, |N| is either 1, ¢, or 2q.

Next, note that G has some subloop isomorphic to Z,: This is clear if |N| is ¢
or 2q, so suppose that |N| = 1 (which will later turn out to be impossible). Then,
by Theorems [3:21] and [45], each (x) is a group of some order dividing 2¢q, and we
cannot have that every z has order 2 (or G would be a Boolean group (by Corollary
B:24) and hence have size a power of 2), so (z) = Z, for some x.

Now, fix a subloop H isomorphic to Z,;. Then H is a a characteristic and isolated
subgroup of G (by Lemma[L13), and G/H = Zy (by Lemma[£11]). There are now
three cases:

Case 1: x? = 1 for all x ¢ H. Then, for all z ¢ H: R2 = L2 = J? = E,, and
Jo | H € AUT(H) (by Lemmas [322] and B). Fix some ¢ ¢ H and some h € H
with h # 1. Then the general element of G is of the form h"c!, with n € Z, and
i € Zy. Now fix r € Z4 such that hJ. = h", so hc = ch".

Now, consider an arbitrary element x = h™c ¢ H. Then hx = zh® for some s.
But then hz = h"Tlc = ch™ " and zh® = (h"c)h® = (ch™)h® = ch™ 5 sor = s.
Thus, for all x ¢ H, we have J, = J., and hence hE, = R

To compute 7:

W = hE, = (he)e = (he)(ch"h™") = (he)((he)h™™) = (W ") Epe = h™"

sor = —1. Hence, for all z ¢ H: R2 = L2 = J2 = E, = I, since E, is the identity
on ({z} U H) = G. Hence, E, =1 for all z € G, since H is a nuclear subgroup.
Now we compute:

(Fme)(he) = (h™e)(ch™) = (h™e)((ch=)hm=")
(h™e)((R™e)h™™™) = (R ™) Epme = K™
Similarly:

h™ . pn = pmtn, (h™c) - k™ = k™ "¢,
h™ - (h"c) = h™T"c, (h™e) - (h"c) = h™™ ",

which we recognize as the usual description of the non-abelian group of order 2¢ as
a semidirect product of Z, by Z,.
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Case 2: (z) is a group for all x ¢ H, but not all such = have order 2. Fix ¢ ¢ H
with ¢? # 1. Then the only possibility is that ¢ has order 2¢, so that (c) = G = Za,.

Case 3: Neither Case 1 nor Case 2 holds. Then fix ¢ such that (c) is not a group.
Then ¢ ¢ H but ¢? € H; however, ¢? # 1. Let h = ¢?; then H = (h). Let d = c\1,
so that cd = 1. Now dc # 1 (otherwise, {c) would be a group by Lemma [3.20), but
de € H (since G/H = Z5), and dc € N (by Theorem B.11]). Hence, N = H.

As in Case 1, the general element of G is of the form h"c!, with n € Z, and
i € {0,1}. Again, J. | H € AUT(H), but now we apply Corollary 3.7 to get
(J)2 | H=(Jz2) | H=11] H. Now, J. | H cannot be the identity (since
c\(c?-¢) = ¢ would imply ¢?-c = ¢-¢?, making (c) a group by Lemma[3.20). Thus,
the only possibility is that h.J. = h™!, so that h"c = ch™™. Now, using H = N and
c? = h, we easily compute:

e = e, (h™e) - b = hmne,
h™ . (h"e) = h™mtne, (h™c) - (h"c) = hitm—n,

It is also easy to verify that these equations indeed yield a CC-loop, which is then
the only non-group CC-loop of order 2gq. O

Regarding Case 3: Note that we have 2> = h for each 2 ¢ (h), as might be
expected from examining Table[[l To verify that this really defines a CC-loop, one
may plug the equations directly into LC'C and RC'C, but it is simpler to just verify
that [G : N] = 2, and then quote Theorem 3.1 of Goodaire and Robinson [I0],
which says that this implies the loop is CC. The actual construction of this loop is
due to Wilson [19].

Next, consider CC-loops of order pq, where p < ¢ are odd primes, with ¢ — 1 not
divisible by p. In the case p = ¢, a non-group CC-loop of order p? was described in
[10]. In the case p < g, we shall show there is none at all; since [10] already proved
that any such loop must have a trivial nucleus, it is not surprising that we begin
by proving that the nucleus is non-trivial.

Lemma 4.16. Suppose that |G| = pq, where p < q are odd primes and ¢ — 1 is not
divisible by p. If G is not a group, then N(G,-) = Z(G,-), and is isomorphic to
either Z, or Zg.

Proof. Consider the three possibilities for N = N(G,-).

If N = Z,, then G/N is a CC-loop of size p, so G/N = Z,. Then, in view of
Corollary[37, every J, defines an automorphism of N of order p. But, since p does
not divide ¢ — 1, the only such automorphism is the identity, so every J, is the
identity on N, which means that N is contained in the center. The same argument
works if N = Z,,.

Finally, suppose N = {1}. Then, by Theorems B21l and B0, each (z) is a group
of order either p or q. Furthermore, the orders of these (x) cannot all be the same,
or Theorem E.T4] would yield a contradiction; hence p < ¢ and some (z) have order
p and some (x) have order q. Now, fix a with (a) & Z,.

Then this (a) is characteristic and isolated by Lemma[T3l In particular, {(a) is
nuclear, so by Lemma B0, each J, defines an automorphism of (a). Furthermore,
if z ¢ (a), then 2? = 1, so J? = I by Lemma BZZ2B|, so J, | (a) is the identity.
Thus, a commutes with all elements of G, so that a € N(G) by Lemma T3, a
contradiction. O
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The proof of the following theorem is patterned after Goodaire and Robinson
[9][10], from which (I)) is immediate, given Lemma

Theorem 4.17. Suppose that p < q are odd primes and g — 1 is not divisible by p.
Then:

1. p < q: The only CC-loop of order pq is Zyq.

2. p=q: There are exactly three CC-loops of order p* besides Lz and Ly X L.

Proof. Assume that G has order pq and is not a group. Do not assume p < ¢, but
assume that ¢ — 1 is not divisible by p, and p — 1 is not divisible by ¢, so that by
Lemma A T6] we may assume that N = N(G,-) = Z(G,-) = Z,. We shall now
derive a multiplication table in the case p = ¢, and a contradiction in the case

pP#q.

Recall that z* denotes 1R%, so 2% - & = 2**1. Note that G/N is a CC-loop of
order p, and hence a group, so that for any z, 4, j, there is a y € N = Z such that
2t xd = gty =yttt

For now, fix any b ¢ N. Then b-b? # b3, since otherwise (b) would be a group
(by Lemma[3:20)), which would imply that G = Z, x Z,. Let ¢ = (b-b*)/b3, so that
b-b>=c-b>=0b3 c. Note that c € N and ¢ # 1, so that N = Z = {c).

For any natural numbers s, define €(r,s) in the field Z, so that b" - b° =
brts - c<(m%). Note that €(0,s) = €(r,0) = €(r,1) = 0 for any r, s, and our choice of
¢ implies €(1,2) = 1.

For any s, let as = R;R;.' € AUT(G,-) (applying Corollary B7). Note that
cas = c. Define 6(s) € Z, so that bas = b571/b* = b- %), Since a; is an
automorphism, b"a; = b5 /b = b"c~"(*). That is, we must have (in Z,) €(r,s) =
r-0(s). Note that 6(0) = (1) =0 and §(2) = 1.

Since b € N, we have bP = bPas = bPc™P, which is impossible unless p = g,
establishing () of the theorem.

We now proceed to examine the possibilities in order ¢*. Fix u € Z, such that
b? = c. Every element of G is of the form b"¢’ for some r, i, and this representation
is unique if we take 0 < r < ¢ and ¢ € Z;. We have a product on these elements
defined by

prts . citite(rs) ifr+s<gq,

T s.J _
bet b = { prts—q . Gitite(rs)+p if r+s>q.

Furthermore, it is easy to see that these equations define a loop of size ¢ (based
on the formal symbols b"¢?). It remains to investigate what values of y and the
e(r,s) = r-40(s) really lead to a CC-loop, and what the possible isomorphism types
are.

To verify that the loop is conjugacy-closed, we simply insert three loop elements
into the equations LCC and RCC. A straightforward computation shows that
LCC is automatically satisfied, and RCC' reduces to

(R) s0(r)+to(r+s)=to(r)+so(r+1t)+td(s) —sd(t).
Setting r = ¢t = 1 yields 6(1 + s) = s+ (s), so I(s) = s(s —1)/2 (mod ¢), and
hence €(r,t) = rt(t —1)/2 (mod ¢). It is easy to check that this expression satisfies
(R). So, we have one CC-loop for every choice of y € Z,.

Now, the choice of b ¢ N determined ¢ € N and then p. Let us now see what
other values of 1 could arise from a different choice, b ¢ N. This b defines ¢ so
that b- b2 = b3 - ¢, and then it € Zg4 such that b? = ¢, Since the value of I
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only depends on which coset of the nucleus b lies in, we may as well assume that
b = b", where 1 < n < ¢q. Then b-b? = pree(mmtenn) apng p3 = 2 . h =
b?mce(n,n)Jre(Qn,n), S0 ¢ = ce(n,Qn)fe(Qn,n) _ cnS. AISO, Bq _ (bn)q — prdeY — et
where v = ¢(n,n) +€(2n,n) +...€((¢g — )n,n) = (g(¢ — 1)/2) - nd(n) = 0 (mod gq).
Thus, it = p/n?, so that the various possible values of y obtainable from a given
loop are all in the ratio of a perfect square in the field Z,. It follows that, up
to isomorphism, the three possibilities for p are 0, 1 (equivalently, any non-zero

square), and any non-square. O

If ¢ is an odd prime and pu € Zg, let C(g,p) denote the CC-loop of order ¢?
constructed as above. For any loop, (G,-), we may form the mirror, (G, o), by
letting xoy = y-x. A straightforward computation shows that for ¢ > 3, the mirror
of C(q,p) is isomorphic to C(g, —u), whereas for ¢ = 3, the mirror of C(q, u) is
isomorphic to C'(q, —u + 2).

5. G-Looprs

It is reasonable to ask to what extent the results of this paper generalize to G-
loops. The results of this section put some limits on this. In Section [B] we collected
a number of results true in all CC-loops. These were mainly equations, or else
implications between equations, such as

(1) Voyzlzy = yo = x(yz) = y(z2)]

from Lemma B4l Here, we show that the only facts of this sort true in all G-loops
are true in all loops.

An equation is an expression of the form ¢ = 7, where o and 7 are terms
composed of variables, 1, and the functions \, /,-. A universal sentence is a logical
sentence of the form Vzx; - - - 2,1, where v is an equation or a Boolean combination
of equations. Thus, (1) above is a universal sentence.

Theorem 5.1. If ¢ is a universal sentence true in all G-loops, then ¢ is true in
all loops.

Bruck [I] (p. 57) asked if one could find “necessary and sufficient conditions
upon the loop G in order that” G be a G-loop. By Theorem Bl such conditions
cannot be just universal statements. We do not know whether such conditions can
be first-order. Of course, there are first-order logical statements true in all G-loops
which are not true in all loops. An example of such a statement is

(2) Vaylry = yr] = Veyz[e(yz) = y(zz)].

But, by Theorem [5.1] for a general G-loop, one cannot pin down by a formula
exactly which elements need to commute in order to conclude z(yz) = y(zz).

In proving Theorem BTl note first that by the following lemma, it is sufficient
to consider sentences about - and 1:

Lemma 5.2. If ¢ is a universal sentence, then there is a universal sentence ¢’
such that ' does not use \ or /, and such that [¢ <= ¢'] is true in all loops.

Proof. Replace all occurrences of \ and /, using the observation that in loops,
Y(z/y) is equivalent to Vz[(zy = ) = ¥(z)]. O
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Let us call an incomplete binary system a pair (G, o), where G is a non-empty
set, o : dom(o) — G is a function, and dom(c) C G x G. We use “zoy = 2”
to abbreviate “(z,y) € dom(o) Ax oy = z”. This incomplete binary system is an
incomplete loop iff it contains an element 1 which makes the loop properties hold
as far as o is defined; more formally:

VeeGlzol=1ox =z,
Vaeyz € Glxoy=xzo0z = y=z|,
Veyz € Glyox =zox = y=1z|.
Note that if (G, o) is a finite incomplete loop and dom(o) is all of G x G, then (G, o)

is a loop. By a theorem of Evans, every finite incomplete loop may be extended to
a loop on a possibly larger finite set:

Lemma 5.3 (Evans [0]). If (G, o) is an incomplete loop, then there is a loop (H,*)
such that G C H, |H| < 2-|G|, and x agrees with o wherever o is defined.

Now, any universal sentence which fails in some loop fails because of a finite
number of elements — that is, because of some finite incomplete subloop. This
incomplete subloop may then be extended to a finite loop, where the sentence still
fails. Hence,

Lemma 5.4. If ¢ is a universal sentence true in all finite loops, then ¢ is true in
all loops.
Definition 5.5. A loop (G, ) is saturated iff

e (G is countably infinite.

e Every finitely generated subloop of G is finite.

e Whenever (K, #) is a finite loop, H is a subloop of K, and ¢ is an injective
homomorphism from H into G, there is an extension of ¢ to an injective
homomorphism from K into G.

The notion of “saturated” is borrowed from model theory [3], but it has a some-
what different meaning there. Note in particular, with H = {1}, that a saturated
loop contains isomorphic copies of all finite loops. So,

Lemma 5.6. If the loop (G,-) is saturated, then every universal sentence true in
(G, ") is true in all loops.

Furthermore, the saturated loop is unique.
Lemma 5.7. There is exactly one saturated loop, up to isomorphism.
Lemma 5.8. The saturated loop is a G-loop.

Proof. Tt is sufficient to prove that every loop isotope of a saturated loop is satu-
rated. O

Proof of Theorem Bl If ¢ is true in all G-loops, then it is true in the saturated
loop, and hence in all loops. [l

6. CONCLUDING REMARKS

We feel that we have demonstrated that CC-loops have a non-trivial structure,
but we have not settled all possible questions. Following Theorems and EI7]
one might try to characterize all CC-loops of sizes pg or p® (for primes p, ). A more
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general question is whether the nucleus must be non-trivial. In fact, as pointed out
in [I0], in all known examples the loop modulo the nucleus is a commutative group.

In another direction, one might try to develop a structure theory of G-loops.
It is still unknown whether there is a non-group G-loop of order 15. Perhaps one
might extend the results of Section [Fl to show that “there is no structure theory”,
but it is not clear exactly what such a statement would mean.

We do not know whether it pays to study the consequences of LCC and RCC
separately. Related to this, one might study LCC and RCC quasigroups. Note
that in a quasigroup, RCC implies that there is a left identity (apply RCC with
2y = z to show that yx = x for all z), so that every CC quasigroup is a loop.
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