## The structure of conjugacy closed loops

HTML articles powered by AMS MathViewer

- by Kenneth Kunen PDF
- Trans. Amer. Math. Soc.
**352**(2000), 2889-2911 Request permission

## Abstract:

We study structure theorems for the conjugacy closed (CC-) loops, a specific variety of G-loops (loops isomorphic to all their loop isotopes). These theorems give a description all such loops of small order. For example, if $p$ and $q$ are primes, $p < q$, and $q-1$ is not divisible by $p$, then the only CC-loop of order $pq$ is the cyclic group of order $pq$. For any prime $q > 2$, there is exactly one non-group CC-loop in order $2q$, and there are exactly three in order $q^2$. We also derive a number of equations valid in all CC-loops. By contrast, every equation valid in all G-loops is valid in all loops.## References

- Richard Hubert Bruck,
*A survey of binary systems*, Reihe: Gruppentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR**0093552** - B. F. Bryant and Hans Schneider,
*Principal loop-isotopes of quasigroups*, Canadian J. Math.**18**(1966), 120–125. MR**188333**, DOI 10.4153/CJM-1966-016-8 - C. C. Chang and H. J. Keisler,
*Model theory*, 3rd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990. MR**1059055** - Orin Chein,
*Moufang loops of small order*, Mem. Amer. Math. Soc.**13**(1978), no. 197, iv+131. MR**466391**, DOI 10.1090/memo/0197 - O. Chein, H. O. Pflugfelder, and J. D. H. Smith (eds.),
*Quasigroups and loops: theory and applications*, Sigma Series in Pure Mathematics, vol. 8, Heldermann Verlag, Berlin, 1990. MR**1125806** - Trevor Evans,
*Embedding incomplete latin squares*, Amer. Math. Monthly**67**(1960), 958–961. MR**122728**, DOI 10.2307/2309221 - Ferenc Fenyves,
*Extra loops. I*, Publ. Math. Debrecen**15**(1968), 235–238. MR**237695** - Ferenc Fenyves,
*Extra loops. II. On loops with identities of Bol-Moufang type*, Publ. Math. Debrecen**16**(1969), 187–192. MR**262409** - Edgar G. Goodaire and D. A. Robinson,
*Loops which are cyclic extensions of their nuclei*, Compositio Math.**45**(1982), no. 3, 341–356. MR**656610** - Edgar G. Goodaire and D. A. Robinson,
*A class of loops which are isomorphic to all loop isotopes*, Canadian J. Math.**34**(1982), no. 3, 662–672. MR**663308**, DOI 10.4153/CJM-1982-043-2 - Edgar G. Goodaire and D. A. Robinson,
*Some special conjugacy closed loops*, Canad. Math. Bull.**33**(1990), no. 1, 73–78. MR**1036860**, DOI 10.4153/CMB-1990-013-9 - Joan Hart and Kenneth Kunen,
*Single axioms for odd exponent groups*, J. Automat. Reason.**14**(1995), no. 3, 383–412. MR**1340327**, DOI 10.1007/BF00881714 - Kenneth Kunen,
*Moufang quasigroups*, J. Algebra**183**(1996), no. 1, 231–234. MR**1397396**, DOI 10.1006/jabr.1996.0216 - Kenneth Kunen,
*Quasigroups, loops, and associative laws*, J. Algebra**185**(1996), no. 1, 194–204. MR**1409983**, DOI 10.1006/jabr.1996.0321 - W. W. McCune, OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6, Argonne National Laboratory, 1994; available at URL: http://www.mcs.anl.gov
- Hala O. Pflugfelder,
*Quasigroups and loops: introduction*, Sigma Series in Pure Mathematics, vol. 7, Heldermann Verlag, Berlin, 1990. MR**1125767** - Eric L. Wilson,
*A class of loops with the isotopy-isomorphy property*, Canadian J. Math.**18**(1966), 589–592. MR**197614**, DOI 10.4153/CJM-1966-057-0 - Robert L. Wilson Jr.,
*Isotopy-isomorphy loops of prime order*, J. Algebra**31**(1974), 117–119. MR**346082**, DOI 10.1016/0021-8693(74)90008-8 - Robert L. Wilson Jr.,
*Quasidirect products of quasigroups*, Comm. Algebra**3**(1975), no. 9, 835–850. MR**376937**, DOI 10.1080/00927877508822075 - J. Zhang and H. Zhang, SEM: a system for enumerating models,
*Proc. 14th Internat. Joint Conference on AI (IJCAI-95)*, Montréal, 1995, pp. 298 – 303; available at URL: http://www.cs.uiowa.edu/~hzhang/

## Additional Information

**Kenneth Kunen**- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 107920
- Email: kunen@math.wisc.edu
- Received by editor(s): September 27, 1996
- Received by editor(s) in revised form: March 13, 1998
- Published electronically: February 16, 2000
- Additional Notes: Author supported by NSF Grants CCR-9503445 and DMS-9704520. The author is grateful to the referee for many helpful comments on the original draft of this paper.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**352**(2000), 2889-2911 - MSC (2000): Primary 20N05; Secondary 03C05, 08A05
- DOI: https://doi.org/10.1090/S0002-9947-00-02350-3
- MathSciNet review: 1615991