Partitions into Primes
HTML articles powered by AMS MathViewer
- by Yifan Yang
- Trans. Amer. Math. Soc. 352 (2000), 2581-2600
- DOI: https://doi.org/10.1090/S0002-9947-00-02386-2
- Published electronically: February 14, 2000
- PDF | Request permission
Abstract:
We investigate the asymptotic behavior of the partition function $p_{\Lambda } (n)$ defined by $\sum ^{\infty }_{n=0}p_{\Lambda } (n)x^{n} =\prod ^{\infty }_{m=1}(1-x^{m})^{-\Lambda (m)}$, where $\Lambda (n)$ denotes the von Mangoldt function. Improving a result of Richmond, we show that $\log p_{\Lambda } (n)=2\sqrt {\zeta (2)n}+O(\sqrt n\exp \{-c(\log n) (\log _{2} n)^{-2/3}(\log _{3} n)^{-1/3}\})$, where $c$ is a positive constant and $\log _{k}$ denotes the $k$ times iterated logarithm. We also show that the error term can be improved to $O(n^{1/4})$ if and only if the Riemann Hypothesis holds.References
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75–115.
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573
- Eugene E. Kohlbecker, Weak asymptotic properties of partitions, Trans. Amer. Math. Soc. 88 (1958), 346–365. MR 95808, DOI 10.1090/S0002-9947-1958-0095808-9
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- A. M. Odlyzko, Explicit Tauberian estimates for functions with positive coefficients, J. Comput. Appl. Math. 41 (1992), no. 1-2, 187–197. Asymptotic methods in analysis and combinatorics. MR 1181719, DOI 10.1016/0377-0427(92)90248-V
- L. B. Richmond, Asymptotic relations for partitions, J. Number Theory 7 (1975), no. 4, 389–405. MR 382210, DOI 10.1016/0022-314X(75)90043-8
- Bruce Richmond, A general asymptotic result for partitions, Canadian J. Math. 27 (1975), no. 5, 1083–1091 (1976). MR 384731, DOI 10.4153/CJM-1975-113-5
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Wolfgang Schwarz, Schwache asymptotische Eigenschaften von Partitionen, J. Reine Angew. Math. 232 (1968), 1–16 (German). MR 236135, DOI 10.1515/crll.1968.232.1
- Wolfgang Schwarz, Asymptotische Formeln für Partitionen, J. Reine Angew. Math. 234 (1969), 174–178 (German). MR 254004
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Bibliographic Information
- Yifan Yang
- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- MR Author ID: 633505
- Email: yfyang@math.uiuc.edu
- Received by editor(s): March 3, 1998
- Published electronically: February 14, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2581-2600
- MSC (2000): Primary 11P82; Secondary 11M26, 11N05
- DOI: https://doi.org/10.1090/S0002-9947-00-02386-2
- MathSciNet review: 1621714