On the structure of weight modules
HTML articles powered by AMS MathViewer
- by Ivan Dimitrov, Olivier Mathieu and Ivan Penkov
- Trans. Amer. Math. Soc. 352 (2000), 2857-2869
- DOI: https://doi.org/10.1090/S0002-9947-00-02390-4
- Published electronically: February 28, 2000
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 356 (2004), 3403-3404.
Abstract:
Given any simple Lie superalgebra ${\mathfrak {g}}$, we investigate the structure of an arbitrary simple weight ${\mathfrak {g}}$-module. We introduce two invariants of simple weight modules: the shadow and the small Weyl group. Generalizing results of Fernando and Futorny we show that any simple module is obtained by parabolic induction from a cuspidal module of a Levi subsuperalgebra. Then we classify the cuspidal Levi subsuperalgebras of all simple classical Lie superalgebras and of the Lie superalgebra W$(n)$. Most of them are simply Levi subalgebras of ${\mathfrak {g}}_{0}$, in which case the classification of all finite cuspidal representations has recently been carried out by one of us (Mathieu). Our results reduce the classification of the finite simple weight modules over all classical simple Lie superalgebras to classifying the finite cuspidal modules over certain Lie superalgebras which we list explicitly.References
- A. Cylke, V. Futorny and S. Ovsienko, On the support of irreducible non-dense modules for finite-dimensional Lie algebras, Canad. J. Math. (to appear).
- S. L. Fernando, Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc. 322 (1990), no. 2, 757–781. MR 1013330, DOI 10.1090/S0002-9947-1990-1013330-8
- V. Futorny, The weight representations of semisimple finite dimensional Lie algebras, Ph.D. Thesis, Kiev University, 1987.
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- O. Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (to appear).
- Ivan Penkov, Characters of strongly generic irreducible Lie superalgebra representations, Internat. J. Math. 9 (1998), no. 3, 331–366. MR 1625368, DOI 10.1142/S0129167X98000142
- Ivan Penkov and Vera Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, Internat. J. Math. 5 (1994), no. 3, 389–419. MR 1274125, DOI 10.1142/S0129167X9400022X
- Manfred Scheunert, Invariant supersymmetric multilinear forms and the Casimir elements of $P$-type Lie superalgebras, J. Math. Phys. 28 (1987), no. 5, 1180–1191. MR 887044, DOI 10.1063/1.527565
Bibliographic Information
- Ivan Dimitrov
- Affiliation: Department of Mathematics, University of California at Riverside, Riverside, California 92521
- Address at time of publication: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- Email: dimitrov@math.ucla.edu
- Olivier Mathieu
- Affiliation: Université Louis Pasteur, IRMA, 7 rue René Descartes, 67000 Strasbourg, France
- Email: mathieu@math.u-strasbg.fr
- Ivan Penkov
- Affiliation: Department of Mathematics, University of California at Riverside, Riverside, California 92521
- Email: penkov@math.ucr.edu
- Received by editor(s): October 8, 1997
- Published electronically: February 28, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2857-2869
- MSC (2000): Primary 17B10
- DOI: https://doi.org/10.1090/S0002-9947-00-02390-4
- MathSciNet review: 1624174