On syzygies of abelian varieties
HTML articles powered by AMS MathViewer
- by Elena Rubei
- Trans. Amer. Math. Soc. 352 (2000), 2569-2579
- DOI: https://doi.org/10.1090/S0002-9947-00-02398-9
- Published electronically: March 7, 2000
- PDF | Request permission
Abstract:
In this paper we prove the following result: Let $X$ be a complex torus and $M$ a normally generated line bundle on $X$; then, for every $p \geq 0$, the line bundle $M^{p+1}$ satisfies Property $N_{p}$ of Green-Lazarsfeld.References
- Lawrence Ein and Robert Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension, Invent. Math. 111 (1993), no. 1, 51–67. MR 1193597, DOI 10.1007/BF01231279
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- Mark L. Green, Koszul cohomology and geometry, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 177–200. MR 1082354
- Mark Green and Robert Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), no. 1, 73–90. MR 813583, DOI 10.1007/BF01388754
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- George R. Kempf, Projective coordinate rings of abelian varieties, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 225–235. MR 1463704
- Shoji Koizumi, Theta relations and projective normality of Abelian varieties, Amer. J. Math. 98 (1976), no. 4, 865–889. MR 480543, DOI 10.2307/2374034
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487, DOI 10.1007/978-3-662-02788-2
- R. Lazarsfeld, Projectivité normale des surfaces abéliannes, redigé par O. Debarre. prépublication No. 14 Europroj - C.I.M.P.A., Nice, 1990.
- Robert Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR 1082360
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- Igor Reider, Vector bundles of rank $2$ and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309–316. MR 932299, DOI 10.2307/2007055
- Tsutomu Sekiguchi, On the normal generation by a line bundle on an Abelian variety, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), no. 7, 185–188. MR 510946
Bibliographic Information
- Elena Rubei
- Affiliation: Dipartimento di Matematica, Università di Pisa, via F. Buonarroti 2, Pisa (PI) c.a.p. 56127, Italia
- Email: rubei@mail.dm.unipi.it
- Received by editor(s): November 30, 1997
- Received by editor(s) in revised form: March 29, 1998
- Published electronically: March 7, 2000
- Additional Notes: This research was carried through in the realm of the AGE Project HCMERBCHRXCT940557 and of the ex-40 MURST Program “Geometria algebrica".
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2569-2579
- MSC (2000): Primary 14K05
- DOI: https://doi.org/10.1090/S0002-9947-00-02398-9
- MathSciNet review: 1624206