Infinite convolution products and refinable distributions on Lie groups
HTML articles powered by AMS MathViewer
- by Wayne Lawton
- Trans. Amer. Math. Soc. 352 (2000), 2913-2936
- DOI: https://doi.org/10.1090/S0002-9947-00-02409-0
- Published electronically: March 2, 2000
- PDF | Request permission
Abstract:
Sufficient conditions for the convergence in distribution of an infinite convolution product $\mu _1*\mu _2*\ldots$ of measures on a connected Lie group $\mathcal G$ with respect to left invariant Haar measure are derived. These conditions are used to construct distributions $\phi$ that satisfy $T\phi = \phi$ where $T$ is a refinement operator constructed from a measure $\mu$ and a dilation automorphism $A$. The existence of $A$ implies $\mathcal G$ is nilpotent and simply connected and the exponential map is an analytic homeomorphism. Furthermore, there exists a unique minimal compact subset $\mathcal K \subset \mathcal G$ such that for any open set $\mathcal U$ containing $\mathcal K,$ and for any distribution $f$ on $\mathcal G$ with compact support, there exists an integer $n(\mathcal U,f)$ such that $n \geq n(\mathcal U,f)$ implies $\operatorname {supp}(T^{n}f) \subset \mathcal U.$ If $\mu$ is supported on an $A$-invariant uniform subgroup $\Gamma ,$ then $T$ is related, by an intertwining operator, to a transition operator $W$ on $\mathbb C(\Gamma ).$ Necessary and sufficient conditions for $T^{n}f$ to converge to $\phi \in L^{2}$, and for the $\Gamma$-translates of $\phi$ to be orthogonal or to form a Riesz basis, are characterized in terms of the spectrum of the restriction of $W$ to functions supported on $\Omega := \mathcal K \mathcal K^{-1} \cap \Gamma .$References
- Larry Baggett, Alan Carey, William Moran, and Peter Ohring, General existence theorems for orthonormal wavelets, an abstract approach, Publ. Res. Inst. Math. Sci. 31 (1995), no. 1, 95–111. MR 1317525, DOI 10.2977/prims/1195164793
- G. Birkhoff, A note on topological groups, Compositio Mathematica, 3 (1936), 427–430.
- N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1285, Hermann, Paris, 1971 (French). Seconde édition. MR 0271276
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- A. Cohen, Ondelettes, analyses multiresolutions et traitement numerique du signal, PhD thesis, Universite Paris IX, Dauphine, 1990.
- Albert Cohen and Ingrid Daubechies, A stability criterion for biorthogonal wavelet bases and their related subband coding scheme, Duke Math. J. 68 (1992), no. 2, 313–335. MR 1191564, DOI 10.1215/S0012-7094-92-06814-1
- A. Cohen, Ingrid Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485–560. MR 1162365, DOI 10.1002/cpa.3160450502
- Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979
- Xingde Dai and David R. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134 (1998), no. 640, viii+68. MR 1432142, DOI 10.1090/memo/0640
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- G. Deslauriers and S. Dubuc, Interpolation dyadique, in Fractals, Dimensions Non Entiérs et Applications (edited by G. Cherbit), Masson, Paris, 1987, pp. 44–45.
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Joan L. Dyer, A nilpotent Lie algebra with nilpotent automorphism group, Bull. Amer. Math. Soc. 76 (1970), 52–56. MR 249544, DOI 10.1090/S0002-9904-1970-12364-3
- Nira Dyn, John A. Gregory, and David Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx. 7 (1991), no. 2, 127–147. MR 1101059, DOI 10.1007/BF01888150
- Timo Eirola, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal. 23 (1992), no. 4, 1015–1030. MR 1166573, DOI 10.1137/0523058
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey, 1989.
- S. A. Gall, Linear Analysis and Representation Theory, Springer-Verlag, New York, 1973.
- A. Grothendieck, Produits tensoriels et espaces nucléaires, Memoirs of the American Mathmatical Society, 16 (1955).
- A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Mathematische Annalen, 69 (1910), 331–371.
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Peter Niels Heller and Raymond O. Wells Jr., The spectral theory of multiresolution operators and applications, Wavelets: theory, algorithms, and applications (Taormina, 1993) Wavelet Anal. Appl., vol. 5, Academic Press, San Diego, CA, 1994, pp. 13–31. MR 1321422, DOI 10.1016/B978-0-08-052084-1.50007-7
- L. Hervé, Construction et regularite des fonctions d’ echelle, SIAM J. Math. Anal., 5 (1995), 26.
- Robert Hermann, Lie groups for physicists, W. A. Benjamin, Inc., New York-Amsterdam, 1966. MR 0213463
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Rong Qing Jia, Subdivision schemes in $L_p$ spaces, Adv. Comput. Math. 3 (1995), no. 4, 309–341. MR 1339166, DOI 10.1007/BF03028366
- Rong Qing Jia and Zuowei Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc. (2) 37 (1994), no. 2, 271–300. MR 1280683, DOI 10.1017/S0013091500006076
- S. Kakutani, Über die Metrization der Topologischen Gruppen, Proceedings of the Imperial Academay of Tokyo, 12 (1936), 82–84.
- Wayne M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), no. 8, 1898–1901. MR 1067632, DOI 10.1063/1.528688
- Wayne M. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys. 32 (1991), no. 1, 57–61. MR 1083085, DOI 10.1063/1.529093
- Wayne M. Lawton, Multiresolution properties of the wavelet Galerkin operator, J. Math. Phys. 32 (1991), no. 6, 1440–1443. MR 1109190, DOI 10.1063/1.529300
- W. Lawton and H. Resnikoff, Multidimensional Wavelet Bases, Technical Report, AWARE, Inc., Bedford, Massachusettes, 1991.
- W. Lawton, S. L. Lee, and Zuowei Shen, Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal. 28 (1997), no. 4, 999–1014. MR 1453317, DOI 10.1137/S003614109528815X
- W. Lawton, S. L. Lee, and Zuowei Shen, Convergence of multidimensional cascade algorithm, Numer. Math. 78 (1998), no. 3, 427–438. MR 1603354, DOI 10.1007/s002110050319
- Pierre Gilles Lemarié, Base d’ondelettes sur les groupes de Lie stratifiés, Bull. Soc. Math. France 117 (1989), no. 2, 211–232 (French, with English summary). MR 1015808
- Rui Lin Long and Di Rong Chen, Biorthogonal wavelet bases on $\textbf {R}^d$, Appl. Comput. Harmon. Anal. 2 (1995), no. 3, 230–242. MR 1339803, DOI 10.1006/acha.1995.1016
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Krzysztof Maurin, General eigenfunction expansions and unitary representations of topological groups, Monografie Matematyczne, Tom 48, PWN—Polish Scientific Publishers, Warsaw, 1968. MR 0247377
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- Peter J. Olver, Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993. MR 1240056, DOI 10.1007/978-1-4612-4350-2
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- Hans Samelson, Notes on Lie algebras, 2nd ed., Universitext, Springer-Verlag, New York, 1990. MR 1056083, DOI 10.1007/978-1-4613-9014-5
- O. L. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics, Springer-Verlag, New York, 1986.
- Zuowei Shen, Refinable function vectors, SIAM J. Math. Anal. 29 (1998), no. 1, 235–250. MR 1617183, DOI 10.1137/S0036141096302688
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- L. Schwartz, Theorie des distributions, Hermann, Paris, 1957.
- George Fix and Gilbert Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory, Studies in Appl. Math. 48 (1969), 265–273. MR 258297, DOI 10.1002/sapm1969483265
- Robert S. Strichartz, A guide to distribution theory and Fourier transforms, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1994. MR 1276724
- Robert S. Strichartz, Self-similarity on nilpotent Lie groups, Geometric analysis (Philadelphia, PA, 1991) Contemp. Math., vol. 140, Amer. Math. Soc., Providence, RI, 1992, pp. 123–157. MR 1197594, DOI 10.1090/conm/140/1197594
- Michael E. Taylor, Noncommutative harmonic analysis, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR 852988, DOI 10.1090/surv/022
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308, DOI 10.1007/978-1-4612-1126-6
- Lars F. Villemoes, Energy moments in time and frequency for two-scale difference equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), no. 6, 1519–1543. MR 1185640, DOI 10.1137/0523085
- K. Yoshida, Functional Analysis, Springer, New York, 1980.
Bibliographic Information
- Wayne Lawton
- Affiliation: Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
- Email: wlawton@math.nus.edu.sg
- Received by editor(s): March 10, 1997
- Received by editor(s) in revised form: April 9, 1998
- Published electronically: March 2, 2000
- Additional Notes: Research supported in part by the NUS Wavelets Program funded by the National Science and Technology Board and the Ministry of Education, Republic of Singapore.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2913-2936
- MSC (1991): Primary 41A15, 41A58, 42C05, 42C15, 43A05, 43A15
- DOI: https://doi.org/10.1090/S0002-9947-00-02409-0
- MathSciNet review: 1638258