The truncated complex $K$-moment problem
Authors:
Raúl Curto and Lawrence A. Fialkow
Journal:
Trans. Amer. Math. Soc. 352 (2000), 2825-2855
MSC (2000):
Primary 47A57, 44A60, 30E05; Secondary 15A57, 15-04, 47N40, 47A20
DOI:
https://doi.org/10.1090/S0002-9947-00-02472-7
Published electronically:
February 28, 2000
MathSciNet review:
1661305
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $\gamma \equiv \gamma ^{\left ( 2n\right ) }$ denote a sequence of complex numbers $\gamma _{00}, \gamma _{01}, \gamma _{10}, \dots , \gamma _{0,2n}, \dots , \gamma _{2n,0}$ ($\gamma _{00}>0, \gamma _{ij}=\bar {\gamma }_{ji}$), and let $K$ denote a closed subset of the complex plane $\mathbb {C}$. The Truncated Complex $K$-Moment Problem for $\gamma$ entails determining whether there exists a positive Borel measure $\mu$ on $\mathbb {C}$ such that $\gamma _{ij}=\int \bar {z}^{i}z^{j} d\mu$ ($0\leq i+j\leq 2n$) and $\operatorname {supp}\mu \subseteq K$. For $K\equiv K_{\mathcal {P}}$ a semi-algebraic set determined by a collection of complex polynomials $\mathcal {P} =\left \{ p_{i}\left ( z,\bar {z}\right ) \right \} _{i=1}^{m}$, we characterize the existence of a finitely atomic representing measure with the fewest possible atoms in terms of positivity and extension properties of the moment matrix $M\left ( n\right ) \left ( \gamma \right )$ and the localizing matrices $M_{p_{i}}$. We prove that there exists a $\operatorname {rank}M\left ( n\right )$-atomic representing measure for $\gamma ^{\left ( 2n\right ) }$ supported in $K_{\mathcal {P}}$ if and only if $M\left ( n\right ) \geq 0$ and there is some rank-preserving extension $M\left ( n+1\right )$ for which $M_{p_{i}}\left ( n+k_{i}\right ) \geq 0$, where $\deg p_{i}=2k_{i}$ or $2k_{i}-1$ $(1\leq i\leq m)$.
- N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR 0184042
- Aharon Atzmon, A moment problem for positive measures on the unit disc, Pacific J. Math. 59 (1975), no. 2, 317–325. MR 402057
- Raúl E. Curto and Lawrence A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), no. 4, 603–635. MR 1147276
- Raúl E. Curto and Lawrence A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), no. 2, 202–246. MR 1233668, DOI https://doi.org/10.1007/BF01200218
- Raúl E. Curto and Lawrence A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem. II, Integral Equations Operator Theory 18 (1994), no. 4, 369–426. MR 1265443, DOI https://doi.org/10.1007/BF01200183
- Raúl E. Curto and Lawrence A. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52. MR 1303090, DOI https://doi.org/10.1090/memo/0568
- R.E. Curto and L.A. Fialkow, Flat extensions of positive moment matrices: Relations in analytic or conjugate terms, Oper. Theory Adv. Appl. 104 (1998), 59–82.
- Raúl E. Curto and Lawrence A. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648, x+56. MR 1445490, DOI https://doi.org/10.1090/memo/0648
- R.E. Curto and L.A. Fialkow, The quadratic moment problem for the unit disc and unit circle, preprint 1998.
- Lawrence Fialkow, Positivity, extensions and the truncated complex moment problem, Multivariable operator theory (Seattle, WA, 1993) Contemp. Math., vol. 185, Amer. Math. Soc., Providence, RI, 1995, pp. 133–150. MR 1332058, DOI https://doi.org/10.1090/conm/185/02152
- L. Fialkow, Minimal representing measures arising from rank-increasing moment matrix extensions, J. Operator Theory, to appear.
- L. Fialkow, Multivariable quadrature and extensions of moment matrices, preprint 1996.
- Bent Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), no. 1, 47–65. MR 693807
- E.K. Haviland, On the momentum problem for distributions in more than one dimension, Amer. J. Math. 57 (1935), 562–568; II, Amer. J. Math. 58 (1936), 164–168.
- M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish; Translations of Mathematical Monographs, Vol. 50. MR 0458081
- Mihai Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), no. 3, 969–984. MR 1254128, DOI https://doi.org/10.1512/iumj.1993.42.42045
- Mihai Putinar and Florian-Horia Vasilescu, Problème des moments sur les compacts semi-algébriques, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 7, 787–791 (French, with English and French summaries). MR 1416177
- M. Putinar and F.-H. Vasilescu, Solving moment problems by dimensional extension, C. R. Acad. Sci. Paris Sér. Math. 328 (1999), 495–499.
- Bruce Reznick, Uniform denominators in Hilbert’s seventeenth problem, Math. Z. 220 (1995), no. 1, 75–97. MR 1347159, DOI https://doi.org/10.1007/BF02572604
- M. Riesz, Sur le problème des moments, Troisième Note, Arkiv för Matematik, Astronomi och Fysik 17 (1923), no. 16, 1–52.
- Konrad Schmüdgen, The $K$-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173, DOI https://doi.org/10.1007/BF01446568
- J.A. Shohat and J.D. Tamarkin, The problem of moments, American Mathematical Society, New York, 1943.
- Ju. L. Šmul′jan, An operator Hellinger integral, Mat. Sb. (N.S.) 49 (91) (1959), 381–430 (Russian). MR 0121662
- J. Stochel, private communication.
- Jan Stochel, Moment functions on real algebraic sets, Ark. Mat. 30 (1992), no. 1, 133–148. MR 1171099, DOI https://doi.org/10.1007/BF02384866
- J. Stochel and F. Szafraniec, The complex moment problem and subnormality: A polar decomposition approach, J. Funct. Anal. 159 (1998), 432–491.
- F.-H. Vasilescu, Moment problems for multi-sequences of operators, J. Math. Anal. Appl. 219 (1998), no. 2, 246–259. MR 1606389, DOI https://doi.org/10.1006/jmaa.1997.5787
- F.-H. Vasilescu, Operator moment problems, preprint 1998.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 47A57, 44A60, 30E05, 15A57, 15-04, 47N40, 47A20
Retrieve articles in all journals with MSC (2000): 47A57, 44A60, 30E05, 15A57, 15-04, 47N40, 47A20
Additional Information
Raúl Curto
Affiliation:
Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
Email:
curto@math.uiowa.edu
Lawrence A. Fialkow
Affiliation:
Department of Mathematics and Computer Science, State University of New York, New Paltz, New York 12561
Email:
fialkow@mcs.newpaltz.edu
Keywords:
Truncated complex moment problem,
moment matrix extension,
flat extensions of positive matrices,
semi-algebraic sets,
localizing matrix
Received by editor(s):
May 14, 1998
Published electronically:
February 28, 2000
Additional Notes:
Research partially supported by NSF grants. The second-named author was also partially supported by the State University of New York at New Paltz Research and Creative Projects Award Program.
Dedicated:
Dedicated to Professor Aaron D. Fialkow on the occasion of his eighty-seventh birthday
Article copyright:
© Copyright 2000
American Mathematical Society