Avoidable algebraic subsets
of Euclidean space
Author:
James H. Schmerl
Journal:
Trans. Amer. Math. Soc. 352 (2000), 2479-2489
MSC (1991):
Primary 03E15, 04A20
DOI:
https://doi.org/10.1090/S0002-9947-99-02331-4
Published electronically:
July 9, 1999
MathSciNet review:
1608502
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Fix an integer and consider real
-dimensional
. A partition of
avoids the polynomial
, where each
is an
-tuple of variables, if there is no set of the partition which contains distinct
such that
. The polynomial is avoidable if some countable partition avoids it. The avoidable polynomials are studied here. The polynomial
is an especially interesting example of an avoidable one. We find (1) a countable partition which avoids every avoidable polynomial over
, and (2) a characterization of the avoidable polynomials. An important feature is that both the ``master'' partition in (1) and the characterization in (2) depend on the cardinality of
.
- 1. Riccardo Benedetti and Jean-Jacques Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990. MR 1070358
- 2. Jack Ceder, Finite subsets and countable decompositions of Euclidean spaces, Rev. Roumaine Math. Pures Appl. 14 (1969), 1247–1251. MR 257307
- 3. Roy O. Davies, Partitioning the plane into denumberably many sets without repeated distances, Proc. Cambridge Philos. Soc. 72 (1972), 179–183. MR 294592, https://doi.org/10.1017/s0305004100046983
- 4. P. Erdős and A. Hajnal, On chromatic number of infinite graphs, Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York, 1968, pp. 83–98. MR 0263693
- 5. Paul Erdős, András Hajnal, Attila Máté, and Richard Rado, Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106, North-Holland Publishing Co., Amsterdam, 1984. MR 795592
- 6. P. Erd\H{o}s and S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc. 49 (1943), 457-461. MR 4:249f
- 7. P. Erdős and P. Komjáth, Countable decompositions of 𝑅² and 𝑅³, Discrete Comput. Geom. 5 (1990), no. 4, 325–331. MR 1043714, https://doi.org/10.1007/BF02187793
- 8. Péter Komjáth, Tetrahedron free decomposition of 𝑅³, Bull. London Math. Soc. 23 (1991), no. 2, 116–120. MR 1122894, https://doi.org/10.1112/blms/23.2.116
- 9. Péter Komjáth, The master coloring, C. R. Math. Rep. Acad. Sci. Canada 14 (1992), no. 5, 181–182. MR 1199857
- 10. Péter Komjáth, A decomposition theorem for 𝑅ⁿ, Proc. Amer. Math. Soc. 120 (1994), no. 3, 921–927. MR 1169038, https://doi.org/10.1090/S0002-9939-1994-1169038-0
- 11. P. Komjáth, Partitions of vector spaces, Period. Math. Hungar. 28 (1994), no. 3, 187–193. MR 1311381, https://doi.org/10.1007/BF01876338
- 12. P. Komjáth, personal letter to the author, 1992.
- 13. Kenneth Kunen, Partitioning Euclidean space, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 3, 379–383. MR 906611, https://doi.org/10.1017/S0305004100067426
- 14. James H. Schmerl, Partitioning Euclidean space, Discrete Comput. Geom. 10 (1993), no. 1, 101–106. MR 1215326, https://doi.org/10.1007/BF02573966
- 15. James H. Schmerl, Triangle-free partitions of Euclidean space, Bull. London Math. Soc. 26 (1994), no. 5, 483–486. MR 1308366, https://doi.org/10.1112/blms/26.5.483
- 16. James H. Schmerl, Countable partitions of Euclidean space, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 1, 7–12. MR 1373342, https://doi.org/10.1017/S0305004100074612
- 17. Lou van den Dries, Alfred Tarski’s elimination theory for real closed fields, J. Symbolic Logic 53 (1988), no. 1, 7–19. MR 929371, https://doi.org/10.2307/2274424
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 03E15, 04A20
Retrieve articles in all journals with MSC (1991): 03E15, 04A20
Additional Information
James H. Schmerl
Affiliation:
Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
Email:
schmerl@math.uconn.edu
DOI:
https://doi.org/10.1090/S0002-9947-99-02331-4
Keywords:
Algebraic sets,
avoidable polynomials,
infinite combinatorics
Received by editor(s):
November 5, 1997
Published electronically:
July 9, 1999
Article copyright:
© Copyright 2000
American Mathematical Society