On reflection of stationary sets in $\mathcal {P}_\kappa \lambda$
HTML articles powered by AMS MathViewer
- by Thomas Jech and Saharon Shelah
- Trans. Amer. Math. Soc. 352 (2000), 2507-2515
- DOI: https://doi.org/10.1090/S0002-9947-99-02448-4
- Published electronically: April 20, 1999
- PDF | Request permission
Abstract:
Let $\kappa$ be an inaccessible cardinal, and let $E_{0} = \{x \in \mathcal {P}_{\kappa }\kappa ^{+} : \text {cf} \; \lambda _{x} = \text {cf} \; \kappa _{x}\}$ and $E_{1} = \{x \in \mathcal {P}_{\kappa }\kappa ^{+} : \kappa _{x}$ is regular and $\lambda _{x} = \kappa _{x}^{+}\}$. It is consistent that the set $E_{1}$ is stationary and that every stationary subset of $E_{0}$ reflects at almost every $a \in E_{1}$.References
- Hans-Dieter Donder, Peter Koepke, and Jean-Pierre Levinski, Some stationary subsets of ${\scr P}(\lambda )$, Proc. Amer. Math. Soc. 102 (1988), no. 4, 1000–1004. MR 934882, DOI 10.1090/S0002-9939-1988-0934882-6
- M. Foreman, M. Magidor, and S. Shelah, Martin’s maximum, saturated ideals, and nonregular ultrafilters. I, Ann. of Math. (2) 127 (1988), no. 1, 1–47. MR 924672, DOI 10.2307/1971415
- Thomas J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1972/73), 165–198. MR 325397, DOI 10.1016/0003-4843(73)90014-4
- Thomas Jech and Saharon Shelah, Full reflection of stationary sets below $\aleph _\omega$, J. Symbolic Logic 55 (1990), no. 2, 822–830. MR 1056391, DOI 10.2307/2274667
- David W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), no. 1, 57–103. MR 457191, DOI 10.1016/0003-4843(77)90010-9
- Richard Laver, Making the supercompactness of $\kappa$ indestructible under $\kappa$-directed closed forcing, Israel J. Math. 29 (1978), no. 4, 385–388. MR 472529, DOI 10.1007/BF02761175
- Menachem Magidor, Reflecting stationary sets, J. Symbolic Logic 47 (1982), no. 4, 755–771 (1983). MR 683153, DOI 10.2307/2273097
- S. Shelah, Strong partition relations below the power set: consistency; was Sierpiński right? II, Sets, graphs and numbers (Budapest, 1991) Colloq. Math. Soc. János Bolyai, vol. 60, North-Holland, Amsterdam, 1992, pp. 637–668. MR 1218224
- S. Shelah, Iteration of $\lambda$-complete forcing not collapsing $\lambda ^{+}$, [Sh 655] to appear.
Bibliographic Information
- Thomas Jech
- Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- Email: jech@math.psu.edu
- Saharon Shelah
- Affiliation: Institute of Mathematics, The Hebrew University, Jerusalem, Israel
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Received by editor(s): January 26, 1998
- Published electronically: April 20, 1999
- Additional Notes: Supported by NSF grants DMS-9401275 and DMS 97-04477
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2507-2515
- MSC (1991): Primary 03E35, 03E55
- DOI: https://doi.org/10.1090/S0002-9947-99-02448-4
- MathSciNet review: 1650097