A new result on the Pompeiu problem
HTML articles powered by AMS MathViewer
- by R. Dalmasso
- Trans. Amer. Math. Soc. 352 (2000), 2723-2736
- DOI: https://doi.org/10.1090/S0002-9947-99-02533-7
- Published electronically: October 15, 1999
- PDF | Request permission
Abstract:
A nonempty bounded open set $\Omega \subset {\mathbb {R}}^{n}$ ($n \geq 2$) is said to have the Pompeiu property if and only if the only continuous function $f$ on ${\mathbb {R}}^{n}$ for which the integral of $f$ over $\sigma (\Omega )$ is zero for all rigid motions $\sigma$ of ${\mathbb {R}}^{n}$ is $f \equiv 0$. We consider a nonempty bounded open set $\Omega \subset {\mathbb {R}}^{n}$ $(n \geq 2)$ with Lipschitz boundary and we assume that the complement of $\overline {\Omega }$ is connected. We show that the failure of the Pompeiu property for $\Omega$ implies some geometric conditions. Using these conditions we prove that a special kind of solid tori in ${\mathbb {R}}^{n}$, $n \geq 3$, has the Pompeiu property. So far the result was proved only for solid tori in ${\mathbb {R}}^{4}$. We also examine the case of planar domains. Finally we extend the example of solid tori to domains in ${\mathbb {R}}^{n}$ bounded by hypersurfaces of revolution.References
- Carlos Alberto Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse Math. 37 (1980), 128–144. MR 583635, DOI 10.1007/BF02797683
- C. A. Berenstein and D. Khavinson, Do solid tori have the Pompeiu property?, Expo. Math. 15 (1997), 87-93.
- Leon Brown, Bertram M. Schreiber, and B. Alan Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 125–154 (English, with French summary). MR 352492
- Peter Ebenfelt, Singularities of the solution to a certain Cauchy problem and an application to the Pompeiu problem, Duke Math. J. 71 (1993), no. 1, 119–142. MR 1230288, DOI 10.1215/S0012-7094-93-07106-2
- Peter Ebenfelt, Some results on the Pompeiu problem, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 323–341. MR 1234737
- Peter Ebenfelt, Propagation of singularities from singular and infinite points in certain complex-analytic Cauchy problems and an application to the Pompeiu problem, Duke Math. J. 73 (1994), no. 3, 561–582. MR 1262927, DOI 10.1215/S0012-7094-94-07323-7
- Harley Flanders, A proof of Minkowski’s inequality for convex curves, Amer. Math. Monthly 75 (1968), 581–593. MR 233287, DOI 10.2307/2313773
- Nicola Garofalo and Fausto Segàla, New results on the Pompeiu problem, Trans. Amer. Math. Soc. 325 (1991), no. 1, 273–286. MR 994165, DOI 10.1090/S0002-9947-1991-0994165-X
- Nicola Garofalo and Fausto Segàla, Another step toward the solution of the Pompeiu problem in the plane, Comm. Partial Differential Equations 18 (1993), no. 3-4, 491–503. MR 1214869, DOI 10.1080/03605309308820938
- Nicola Garofalo and Fausto Segàla, Univalent functions and the Pompeiu problem, Trans. Amer. Math. Soc. 346 (1994), no. 1, 137–146. MR 1250819, DOI 10.1090/S0002-9947-1994-1250819-4
- Gunnar Johnsson, The Cauchy problem in $\textbf {C}^N$ for linear second order partial differential equations with data on a quadric surface, Trans. Amer. Math. Soc. 344 (1994), no. 1, 1–48. MR 1242782, DOI 10.1090/S0002-9947-1994-1242782-7
- Patrizia Pucci and James Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), no. 3, 681–703. MR 855181, DOI 10.1512/iumj.1986.35.35036
- Stephen A. Williams, A partial solution of the Pompeiu problem, Math. Ann. 223 (1976), no. 2, 183–190. MR 414904, DOI 10.1007/BF01360881
- Stephen A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J. 30 (1981), no. 3, 357–369. MR 611225, DOI 10.1512/iumj.1981.30.30028
- Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669–706. MR 645762
- Lawrence Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), no. 3, 161–175. MR 562919, DOI 10.2307/2321600
- L. Zalcman, A bibliographic survey of the Pompeiu problem, Approximation by solutions of partial differential equations (Hanstholm, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 365, Kluwer Acad. Publ., Dordrecht, 1992, pp. 185–194. MR 1168719
Bibliographic Information
- R. Dalmasso
- Affiliation: Laboratoire LMC-IMAG, Equipe EDP, BP 53, F-38041 Grenoble Cedex 9, France
- Email: robert.dalmasso@imag.fr
- Received by editor(s): June 6, 1997
- Received by editor(s) in revised form: January 14, 1998
- Published electronically: October 15, 1999
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2723-2736
- MSC (1991): Primary 35N05
- DOI: https://doi.org/10.1090/S0002-9947-99-02533-7
- MathSciNet review: 1694284