Absolutely continuous S.R.B. measures for random Lasota-Yorke maps
HTML articles powered by AMS MathViewer
- by Jérôme Buzzi
- Trans. Amer. Math. Soc. 352 (2000), 3289-3303
- DOI: https://doi.org/10.1090/S0002-9947-00-02607-6
- Published electronically: March 24, 2000
- PDF | Request permission
Abstract:
A. Lasota and J. A. Yorke proved that a piecewise expanding interval map admits finitely many ergodic absolutely continuous invariant probability measures. We generalize this to the random composition of such maps under conditions which are natural and less restrictive than those previously studied by Morita and Pelikan. For instance our conditions are satisfied in the case of arbitrary random $\beta$-transformations, i.e., $x\mapsto \beta x\mod 1$ on $[0,1]$ where $\beta$ is chosen according to any stationary stochastic process (in particular, not necessarily i.i.d.) with values in $]1,\infty [$. Résumé. A. Lasota et J. A. Yorke ont montré qu’une application de l’intervalle dilatante par morceaux admet un nombre fini de mesures de probabilité invariantes et ergodiques absolument continues. Nous généralisons ce résultat à la composition aléatoire de telles applications sous des conditions naturelles, moins restrictives que celles précédemment envisagées par Morita et Pelikan. Par exemple, nos conditions sont satisfaites par toute $\beta$-transformation aléatoire, i.e., $x\mapsto \beta x\mod 1$ sur $[0,1]$ avec $\beta$ choisi selon un processus stochastique stationnaire quelconque (en particulier, non-nécessairement i.i.d.) à valeurs dans $]1,\infty [$.References
- Viviane Baladi, Correlation spectrum of quenched and annealed equilibrium states for random expanding maps, Comm. Math. Phys. 186 (1997), no. 3, 671–700. MR 1463817, DOI 10.1007/s002200050124
- Viviane Baladi, Abdelaziz Kondah, and Bernard Schmitt, Random correlations for small perturbations of expanding maps, Random Comput. Dynam. 4 (1996), no. 2-3, 179–204. MR 1402416
- Michael Blank and Gerhard Keller, Stochastic stability versus localization in one-dimensional chaotic dynamical systems, Nonlinearity 10 (1997), no. 1, 81–107. MR 1430741, DOI 10.1088/0951-7715/10/1/006
- Thomas Bogenschütz and Volker Matthias Gundlach, Symbolic dynamics for expanding random dynamical systems, Random Comput. Dynam. 1 (1992/93), no. 2, 219–227. MR 1186374
- Thomas Bogenschütz and Volker Mathias Gundlach, Ruelle’s transfer operator for random subshifts of finite type, Ergodic Theory Dynam. Systems 15 (1995), no. 3, 413–447. MR 1336700, DOI 10.1017/S0143385700008464
- J. Buzzi, Absolutely continuous invariant measures for generic multi-dimensional piecewise expanding and affine maps, Int. J. Bifurcations & Chaos 9 (1999), 1743–1750.
- —, Exponential decay of correlations for random Lasota-Yorke maps, (preprint I.M.L. 98-12), to appear Commun. Math. Phys.
- —, A.c.i.m.’s for arbitrary expanding piecewise real-analytic mappings of the plane, (preprint I.M.L. 98-13), to appear Ergod. Th. & Dynam. Sys.
- —, A.c.i.m.’s as equilibrium states for piecewise invertible dynamical systems, (preprint I.M.L. 98).
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- P. Ferrero and B. Schmitt, Produits aléatoires d’opérateurs matrices de transfert, Probab. Theory Related Fields 79 (1988), no. 2, 227–248 (French, with English summary). MR 958289, DOI 10.1007/BF00320920
- P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformation in $\textbf {R}^N$, Israel J. Math. 67 (1989), no. 3, 272–286. MR 1029902, DOI 10.1007/BF02764946
- P. Góra and B. Schmitt, Un exemple de transformation dilatante et $C^1$ par morceaux de l’intervalle, sans probabilité absolument continue invariante, Ergodic Theory Dynam. Systems 9 (1989), no. 1, 101–113 (French, with English summary). MR 991491, DOI 10.1017/S0143385700004831
- Stefan Kempisty, Sur les fonctions à variation bornée au sens de Tonelli, Bull. Sém. Math. Univ. Wilno 2 (1939), 13–21 (French). MR 46
- Yuri Kifer, Ergodic theory of random transformations, Progress in Probability and Statistics, vol. 10, Birkhäuser Boston, Inc., Boston, MA, 1986. MR 884892, DOI 10.1007/978-1-4684-9175-3
- Yuri Kifer, Random perturbations of dynamical systems, Progress in Probability and Statistics, vol. 16, Birkhäuser Boston, Inc., Boston, MA, 1988. MR 1015933, DOI 10.1007/978-1-4615-8181-9
- A. Kondah, Les endomorphismes dilatants de l’intervalle et leurs perturbations aléatoires, Thèse de l’Université de Bourgogne, Dijon, 1991.
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- A. Lasota and James A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488 (1974). MR 335758, DOI 10.1090/S0002-9947-1973-0335758-1
- Takehiko Morita, Random iteration of one-dimensional transformations, Osaka J. Math. 22 (1985), no. 3, 489–518. MR 807105
- S. Pelikan, Invariant densities for random maps of the interval, Trans. Amer. Math. Soc. 281 (1984), no. 2, 813–825. MR 722776, DOI 10.1090/S0002-9947-1984-0722776-1
- Marek Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), no. 1, 69–80. MR 728198, DOI 10.4064/sm-76-1-69-80
- M. Tsujii, A.c.i.m. for piecewise real-analytic expanding mappings of the plane (preprint, Hokkaido, 1998).
- —, Piecewise $C^{r}$ expanding maps with singular ergodic properties (preprint, Hokkaido, 1998).
Bibliographic Information
- Jérôme Buzzi
- Affiliation: Institut de Mathématiques de Luminy, 163 av. de Luminy, Case 907, 13288 Marseille Cedex 9, France
- Address at time of publication: Centre de Mathématiques, Ecole Polytechnique, 91128 Palaiseau Cedex, France
- Email: buzzi@iml.univ-mrs.fr
- Received by editor(s): January 1, 2500
- Received by editor(s) in revised form: January 1, 1998
- Published electronically: March 24, 2000
- Additional Notes: Work partly done at the Laboratoire de Topologie de Dijon, Université de Bourgogne, France
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 3289-3303
- MSC (2000): Primary 37A25, 37H99
- DOI: https://doi.org/10.1090/S0002-9947-00-02607-6
- MathSciNet review: 1707698