Galois embeddings for linear groups
HTML articles powered by AMS MathViewer
- by Shreeram S. Abhyankar
- Trans. Amer. Math. Soc. 352 (2000), 3881-3912
- DOI: https://doi.org/10.1090/S0002-9947-00-02438-7
- Published electronically: April 18, 2000
- PDF | Request permission
Abstract:
A criterion is given for the solvability of a central Galois embedding problem to go from a projective linear group covering to a vectorial linear group covering.References
- Shreeram S. Abhyankar, Nice equations for nice groups, Israel J. Math. 88 (1994), no. 1-3, 1–23. MR 1303488, DOI 10.1007/BF02937504
- Shreeram S. Abhyankar, Projective polynomials, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1643–1650. MR 1403111, DOI 10.1090/S0002-9939-97-03939-7
- S. S. Abhyankar, Galois theory of semilinear transformations, London Math. Soc. Lecture Note Ser., 256, Cambridge Univ. Press, Cambridge, 1999.
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- R. W. Carter, Simple Groups of Lie Type, Wiley, 1977.
- Peter Dembowski, Finite geometries, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Reprint of the 1968 original. MR 1434062
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Jean Dieudonné, On the automorphisms of the classical groups, Memoirs of the American Mathematical Society, No. 2, American Mathematical Society, Providence, R.I., 1980. With a supplement by Loo Keng Hua [Luo Geng Hua]; Reprint of the 1951 original. MR 606555
- O. Schreier and B. L. van der Waerden, Die Automorphismen der projectiven Gruppen, Abhand. Math. Seminar Univ. Hamburg 6 (1928), 303-322.
- Robert Steinberg, Automorphisms of finite linear groups, Canadian J. Math. 12 (1960), 606–615. MR 121427, DOI 10.4153/CJM-1960-054-6
- Michio Suzuki, Gun ron. Vol. 1, Gendai Sūgaku [Modern Mathematics], vol. 18, Iwanami Shoten, Tokyo, 1977 (Japanese). MR 514842
- O. Veblen and J. W. Young, Projective Geometry, Vols. I and II, Ginn and Company, 1910-1918.
Bibliographic Information
- Shreeram S. Abhyankar
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Email: ram@cs.purdue.edu
- Received by editor(s): May 5, 1998
- Received by editor(s) in revised form: September 15, 1998
- Published electronically: April 18, 2000
- Additional Notes: This work was partially supported by NSF Grant DMS 91-01424 and NSA grant MDA 904-97-1-0010.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 3881-3912
- MSC (2000): Primary 12F10, 14H30, 20D06, 20E22
- DOI: https://doi.org/10.1090/S0002-9947-00-02438-7
- MathSciNet review: 1650057