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THE PROBLEM OF LACUNAS
AND ANALYSIS ON ROOT SYSTEMS

YURI BEREST

Abstract. A lacuna of a linear hyperbolic differential operator is a domain
inside its propagation cone where a proper fundamental solution vanishes iden-
tically. Huygens’ principle for the classical wave equation is the simplest im-
portant example of such a phenomenon. The study of lacunas for hyperbolic
equations of arbitrary order was initiated by I. G. Petrovsky (1945). Extend-
ing and clarifying his results, Atiyah, Bott and G̊arding (1970–73) developed
a profound and complete theory for hyperbolic operators with constant co-
efficients. In contrast, much less is known about lacunas for operators with
variable coefficients. In the present paper we study this problem for one re-
markable class of partial differential operators with singular coefficients. These
operators stem from the theory of special functions in several variables related
to finite root systems (Coxeter groups). The underlying algebraic structure
makes it possible to extend many results of the Atiyah-Bott-G̊arding theory.
We give a generalization of the classical Herglotz-Petrovsky-Leray formulas ex-
pressing the fundamental solution in terms of Abelian integrals over properly
constructed cycles in complex projective space. Such a representation allows
us to employ the Petrovsky topological condition for testing regular (strong)
lacunas for the operators under consideration. Some illustrative examples are
constructed. A relation between the theory of lacunas and the problem of clas-
sification of commutative rings of partial differential operators is discussed.

Introduction

The classical integral formulas solving the initial boundary value problem for the
wave equation

�nu :=
(
∂2

∂x2
1

− ∂2

∂x2
2

− . . .− ∂2

∂x2
n

)
u(x) = 0 , x ∈ Rn ,(0.1)

reveal a fundamental difference between even and odd n. When the number of
dimensions is even (n > 2), Huygens’ principle holds (cf. [33], [17]): the solution of
a regular Cauchy problem for (0.1) at every point x = x0 depends on its initial data
only in an arbitrarily small neighborhood of the light cone surface with the vertex
at this point. By contrast, for odd dimensions (and n = 2), the corresponding
domain of dependence also contains the interior points of the propagation cone.

Huygens’ principle in that sense can be viewed as a prelude to the general theory
of lacunas for hyperbolic differential operators of arbitrary order created by I. G.
Petrovsky [50].
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According to Petrovsky’s definition, a lacuna of a linear hyperbolic differential
operator L is an open connected component L of the complement of the conoid of
bicharacteristics of L, in which the principal fundamental solution Φ(L, ·) vanishes
identically.

In his paper [50] Petrovsky posed and studied the problem of lacunas mainly
for homogeneous strongly hyperbolic operators with constant coefficients. One
of the important results of his work was the discovery of a remarkable topological
criterion for existence of lacunas for such operators (now referred to as the Petrovsky
condition).

A further refinement of Petrovsky’s theory and its generalization to the class
of hyperbolic operators with multiple characteristics was accomplished by Atiyah,
Bott and G̊arding in their seminal treatise on lacunas [2],[3]. In particular, these
authors modified the notion of lacuna and proposed a relevant (local) version of
Petrovsky’s criterion [3].

Lacunas in the sense of Atiyah, Bott and G̊arding (usually called weak or C∞-
lacunas) are open connected components L in the complement of a singular locus W
of the fundamental solution Φ(L, ·), such that Φ(L, ·) admits a local C∞-extension
from L to its closure L̄. In this case the distribution Φ(L, ·) is said to have a sharp
front from L at each boundary point x ∈ ∂L.

Such a generalization made it possible to apply the methods of microlocal anal-
ysis and the theory of singularities to the closer study of weak lacunas and sharp
fronts for hyperbolic operators both with constant and with variable (smooth) co-
efficients (see [27], [12], [28], [56], [57] and references therein).

Meanwhile, the problem of lacunas (in the original Petrovsky sense) for hyper-
bolic operators with variable coefficients seems to remain much less well-studied.
Powerful pseudo-differential methods and, in particular, the theory of Fourier inte-
gral operators [38], [19] only provide an analysis of singularities in which one is led to
neglect C∞-functions, and thus they seem to be not quite adapted to investigation
of lacunas in the strong sense.

To the best of author’s knowledge1, the main results available in this field are
concerned only with second order hyperbolic operators and related to the old ques-
tion of Hadamard (see [33], book IV): Which wave-type operators satisfy Huygens’
principle in its strict form?

In contrast with the higher order case, this problem is, in principle, accessible to
local methods based on the Hadamard-Riesz type expansions of the fundamental
distribution. Yet, in spite of considerable efforts, it is still far from completely
solved (see, e.g., the monographs [17], [22], [32], surveys [23], [18], [37], [45], [10],
as well as references therein).

Recently, a new class of second order hyperbolic operators compatible with Huy-
gens’ principle on Minkowski (flat) spaces has been found ([8], [9]). These oper-
ators can be viewed as a natural generalization of the classical examples due to
Stellmacher ([52], [53]). Their construction, based on recent developments in the
theory of special functions in several variables (see, e.g., [20], [21], [35], [36], [48],
[49], [14], [15], [58]), reveals an interesting connection between Huygens’ principle
and Coxeter groups (i.e., finite reflection subgroups of the real orthogonal group
O(n)).

1Cf. also remarks in [23], [18].
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The purpose of the present work is a further and deeper study of the link between
the theory of lacunas and finite reflection groups. Our main concern will be to carry
over the results of [8], [9] to the case of higher order linear hyperbolic differential
operators

L = P (D) +
∑
|ν|<p

aν(x)Dν , D := −i ∂
∂x

,(0.2)

with constant principal symbols P (ζ), degP (ζ) = p ≥ 2.
In fact, we give a generalization of the Petrovsky-Atiyah-Bott-G̊arding theory to

a class of hyperbolic operators with variable coefficients. The underlying algebraic
structure makes it possible to represent the fundamental solutions of such operators
in terms of Abelian integrals of Herglotz-Petrovsky type and then to employ the
Petrovsky topological condition for testing their lacunas.

As should be clear a priori, the class of differential operators under consideration
is quite exceptional. Physically, such operators occur as ‘quantum Hamiltonians’
of some completely integrable quantum models ([47]), while, mathematically, they
stem from the theory of special functions in several variables (Bessel-type equations)
related to Coxeter systems (see [49], [36] and references therein). Within the theory
of partial differential equations these operators can be regarded as a far-reaching
generalization of the classical Euler-Poisson-Darboux equations ([17]).

In a broader sense, we would like to view our results in the context of a natural
extension of the Hadamard problem in a general setting of the theory of lacunas:
For which hyperbolic polynomials P ∈ Hyp(ϑ) do there exist nontrivial families
of partial differential operators (0.2) having P as a common principal symbol and
admitting interior lacunas in their propagation cones? How can one characterize
such families for a given P (ζ), if any do exist?

From the topological point of view, similar questions are raised and discussed
in the recent book [57]. By contrast, our attempt here is to stress the algebro-
geometric aspect of the problem and to explore some first instructive examples.
The development of a complete classification theory seems hardly attainable at the
present stage. Indeed, even in the classical case of the second order wave polynomial,
the problem has been solved in dimension n = 4 ([44], [34], [1]), while in higher
dimensions (n ≥ 6) a complete solution is available only for some restricted classes
of wave-type operators (see [52], [41], [5]).

The paper is written in a self-contained manner.2 Our analysis rests heavily on
the theory of lacunas for hyperbolic equations with constant coefficients. We have
included the necessary results from this theory, following mostly [2], [3].

1. Root systems and algebras of Dunkl operators

This section is a preliminary one. Here, we fix notation and prepare some aux-
iliary results (mostly of an algebraic nature) based on the work of Dunkl [20] and
Heckman [35].

Let V be a real finite-dimensional vector space (dim V = n) endowed with a
positive definite symmetric bilinear form ( · , · ). We write V ′ := HomR(V,R) for its
real dual, and VC := V ⊗C , V ′C := V ′ ⊗C for the corresponding complexifications.
The following notation is conventional: R[V ] is the ring of real polynomials on V ,

2 A brief summary of our main results can be found in [6].
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and C[V ] is its complex counterpart, a space of complex rational functions on V ;
End[C(V )] denotes the associative algebra of linear endomorphisms of C(V ).

Consider a finite group G ⊂ O(V ) generated by (real) reflections in V . By a
reflection we mean a linear invertible operator sα ∈ End(V ) which sends some
nonzero vector α ∈ V to its negative while fixing the orthogonal hyperplane α⊥

pointwise:

sα = id− α⊗ α∨, with α∨ := 2 (α, α)−1(α, ·) ∈ V ′ .(1.1)

Definition 1.1. A root system < := <(G) associated to G is a finite set {α} of
nonzero vectors in V such that (i) < ∩ R< = ±α , (ii) sα(<) = < for all α ∈ <,
and (iii) G = 〈 sα |α ∈ < 〉.

Clearly, the system < is determined up to a normalization of ‘roots’ α ∈ <. The
number rkG := dim(span<) is called the rank of the group G. When rkG = n, the
group G acts on V with no (nonzero) fixed points and is referred to as essential.3

We denote by <+ the subset of vectors in < positive with respect to some total
ordering in V . Then < is obviously the disjoint union of <+ and (−<+).

Let M := M(G) be the linear space of all R-valued G-invariant functions on
< , m : < → R , α 7→ mα, called (root) multiplicities. The dimension of M is equal
to the number r of G-orbits in <, which in turn is equal to the number of conjugacy
classes of reflections in G.

Following Dunkl [20], we introduce a family of differential-reflection operators
∇m,v ∈ End[C(V )] on the space C(V ) parametrized by the elements of M . Namely,
for fixed v ∈ V and m ∈M , we set

∇m,v := ∂v +
∑
α∈<+

mα
(α, v)
(α, · ) ŝα ,(1.2)

where ∂v stands for the derivative in direction v, (α, · ) ∈ V ′ ⊂ C[V ] is the linear
form x 7→ (α, x) on V , and the hat over g ∈ G denotes the standard representation
of G on C(V ), i.e. ĝ : f(x) 7→ f(g−1(x)) , f(·) ∈ C(V ).

Remark 1.2. Dealing with polynomial (rather than rational) functions on V , Dunkl
defines his operators in a different (but essentially equivalent to (1.2)) form (cf.
[20]).

Remark 1.3. The definition (1.2) is independent of the length of roots in < and the
choice of total ordering in V . Indeed, since mα = m−α, we have

∇m,v := ∂v +
1
2

∑
α∈<

mα
(α, v)
(α, · ) ŝα .

The family of Dunkl operators is determined by the finite reflection group G and
the multiplicity function m ∈M(G).

The basic properties of the operators (1.2) are given in the following lemma.

Lemma 1.4 (Dunkl, [20]). For all u, v ∈ V , m ∈ M and g ∈ G, the following
properties hold:

(a) commutativity:

∇m,u ◦ ∇m,v = ∇m,v ◦ ∇m,u.(1.3)

3In the sequel, we will sometimes allow rkG < n.
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(b) G-equivariance:

ĝ ◦ ∇m,v ◦ ĝ−1 = ∇m,g(v).(1.4)

(c) homogeneity: When f ∈ Cp(V ) is homogeneous of degree p, ∇m,v[f ] is ho-
mogeneous of degree p− 1.

The commutativity condition (a) is verified by a straightforward calculation. In
fact, the terms with derivatives are cancelled identically in (1.3), and the commu-
tator [∇m,u,∇m,v] vanishes if and only if the following identity holds:∑

α,β∈<+

mαmβ
[(α, u)(β, v) − (α, v)(β, u)]

(α, · )(sα(β), · ) ŝα ŝβ = 0 .

The latter is known to be valid for any Coxeter root system (see [20], Proposi-
tion 1.7, and [35], Proposition 2.2). The properties (b) and (c) follow immediately
from the definiton (1.2).

Let C[V ′] ∼= SymC(V ) be the (complexified) symmetric algebra over V . Accord-
ing to Lemma 1.4, for any fixed m ∈ M we may define an algebra homomorphism
∇m : C[V ′] → End[C(V )] sending each monomial vν1

1 · · · v
νp
p , vi ∈ V, νi ∈ Z+ , to

∇ν1
m,v1
◦ · · · ◦∇νpm,vp and extending the result to all of C[V ′] by linearity. The image

of ∇m, denoted by C[∇m], can be viewed as a commutative associative deformation
of the ring of constant coefficient differential operators on V .

Since the homomorphism ∇m is injective, the standard ‘diagonal’ representation
of G, G→ Aut(C[V ′]), carries over to its image C[∇m]. The proper subalgebra of
C[∇m] generated by all G-invariant operators will be then denoted by C[∇m]G.

The following lemma will be basic for the study of analytic properties of (gener-
alized) Riesz kernels in Section 2.3.

Lemma 1.5. Let Wm ⊂ End[C(V )] be the associative algebra generated by (multi-
plication by) v∗ := (v, ·) and ∇m,u for v, u ∈ V . Then, the adjoint representation
of the invariant commutative subalgebra C[∇m]G ⊂ Wm is locally nilpotent on
Wm. More precisely, for any G-invariant operator ∇m(P ) ∈ C[∇m]G and for any
T ∈ Wm,

adN∇m(P )[T ] = 0 with some N ∈ Z+ .(1.5)

Proof. The statement follows from the commutativity property of Dunkl operators
(see Lemma 1.4 (a)) and the identity

ad∇m(P )[v∗] = ∇m(∂v∗P ) ,(1.6)

valid for arbitrary G-invariant P ∈ C[V ′]G. It remains to check (1.6).
Let Q :=

∑n
i=1 ei ⊗ ei ∈ C[V ′]G for some orthonormal basis e1, . . . , en in V ,

and denote by ∆m := ∇m(Q) its image in C[∇m]G. Then, (1.6) is easily verified
for Q by a straightforward calculation:

[∆m, v∗] = 2∇m,v ,(1.7)

and, hence,

ad2
∆m

[v∗] = 0 .(1.8)

It follows from (1.7) and (1.8) that

∇m(Pk) =
1

2k k!
adk∆m

[Pk](1.9)
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for arbitrary Pk ∈ C[V ′] ∼= C[V ] homogeneous of degree k (cf. [35], Proposition 3.4).
Here, C[V ′] and C[V ] are identified with the help of the invariant inner product
( · , · ) on V .

Representing P ∈ C[V ′]G as a sum of G-invariant homogeneous components
P =

∑
k≥0 Pk, and repeatedly using (1.9), (1.8) and (1.7), we finally obtain

ad∇m(P )[v∗] = −
∑
k≥0

adv∗ [∇m(Pk)]

= −
∑
k≥0

1
2k k!

adv∗ ◦ adk∆m
[Pk]

= −
∑
k≥0

k

2k k!
adk−1

∆m
◦ ad[v∗,∆m][Pk]

=
∑
k≥1

1
2k−1 (k − 1)!

adk−1
∆m

[∂v∗Pk] = ∇m(∂v∗P ) .

Let Char(G) be the multiplicative group of (sign) characters ε : G → Z2 , g 7→
det g, of the group G. We associate to each ε ∈ Char(G) a G-invariant subset of
roots E ⊂ < in such a way that

E := {α ∈ < | ε(sα) = −1 } .(1.10)

The characteristic function of E in < is denoted by 1ε : < → {0, 1}.
Consider C[V ]Gε ⊂ C[V ], the space of relative polynomial invariants of G associ-

ated with the character ε. When ε is trivial, i.e. ε ≡ 1, C[V ]Gε := C[V ]G is a (free)
invariant algebra generated by n homogeneous polynomials of some fixed degrees
(Chevalley’s theorem), while, for arbitrary ε ∈ Char(G), C[V ]Gε is the (free) module
of rank one over C[V ]G generated by the proper alternating polynomial

θε :=
∏
α∈<+

α
1ε(α)
∗ =

∏
α∈E+

α∗ , E+ := E ∩ <+ .(1.11)

Let V Creg := VC \
⋃
α⊥C be an open (quasi-)affine algebraic variety4 in VC ∼= Cn

obtained by removing the (complexified) reflection hyperplanes of the group G. We
write O := O(V Creg) for the coordinate ring of regular functions and D := D(V Creg)
for the ring of (algebraic) differential operators on V Creg. Note that both O and
D can be identified respectively with the localizations of the polynomial ring C[V ]
and the Weyl algebra An(C) := C〈x, ∂∂x〉 at the fundamental alternating polynomial
θ :=

∏
α∈<+

α∗, i. e.

O ∼= C[V, θ−1] , D ∼= C[V, θ−1]⊗C[V ] An(C) .(1.12)

Since V Creg is a G-invariant subvariety in VC, the action of the group G on C[V ] can
be extended to O; the space of (semi-)invariant regular functions on V Creg associated
with a character ε ∈ Char(G) will then be denoted by OGε .

4The notation Vreg is preserved for the set of all R-rational points of V Creg.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE PROBLEM OF LACUNAS AND ANALYSIS ON ROOT SYSTEMS 3749

Let ε ∈ Char(G) and m ∈M be fixed. Following [35], we define the (restriction)
map Resε :Wm → D by the following characteristic property: if T ∈ Wm, then

(ResεT )[f ] = T [f ] whenever f ∈ OGε .

It is easy to see that Resε is a uniquely determined operation which asso-
ciates to a (nonlocal) operator T ∈ Wm ⊂ End[C(V )] its purely differential part
ResεT ∈ D depending on the character ε ∈ Char(G). Indeed, given any element
T =

∑
aν1···νn∇ν1

m,v1
· · · ∇νnm,vn ∈ C[∇m], the restriction ResεT , ε ∈ Char(G), can

be evaluated effectively. For this, using the obvious relations

ŝα ◦ ∂v = ∂sα(v) ◦ ŝα , ŝα ◦ f = ŝα(f) ◦ ŝα , f ∈ O ,

one has to carry over the reflection operators in each monomial of T to the right
and then to replace ŝα by a proper character value ε(sα). For example, we have

Res ∆m =
n∑
i=1

∂2
ei −

∑
α∈<+

mα(mα + 1)(α, α)
(α, x)2

(1.13)

for ∆m ∈ C[∇m]G defined in the proof of Lemma 1.5. (When ε is trivial, we usually
omit the superscript ε in the notation Resε.)

The following lemma is an immediate consequence of the definition of Resε.

Lemma 1.6. Let WG
m,ε be the (linear) subspace in Wm generated by ε-invariant

operators:

WG
m,ε := {T ∈ Wm | Adg(T ) = ε(g)T , g ∈ G } .

Then, if T ∈ Wm and B ∈ WG
m,ε, we have

Resε
′
(TB) = Resε

′ε(T ) Resε
′
(B) for any ε′ ∈ Char(G) .(1.14)

Theorem 1.7 (Heckman, [35]). Let DG,m ⊂ D be the image of C[∇m]G ⊂ WG
m

under the restriction map related to the trivial character, i.e.

DG,m := Res
(
C[∇m]G

)
, m ∈M(G) .(1.15)

Then, DG,m is a commutative ring of regular differential operators in D isomorphic
to the algebra of G-invariant polynomials C[V ′]G.

The proof of this theorem follows directly from Lemma 1.4 (a) and Lemma 1.6
(use formula (1.14) with ε = ε′ ≡ 1).

2. Invariant hyperbolic operators on root systems

In this section we single out a multiplicative semigroup of hyperbolic differential
operators in the commutative ring DG,m and study analytic properties of associated
Riesz kernels.

2.1. Hyperbolic polynomials. Recall first some basic definitions from the theory
of hyperbolic operators with constant coefficients [26] (see also [2]–[3] and [39], vol.
II).

Let V and V ′ be a pair of dual vector spaces (as above) equipped with canon-
ical affine structures. We fix biorthogonal coordinates x = (x1, . . . , xn) , ζ =
(ζ1, . . . , ζn) on V and V ′, and identify C[V ] and C[V ′] with the standard poly-
nomial rings C[x] and C[ζ] respectively.

Let P ∈ C[V ′], and let P0 stand for the principal part of P .
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Definition 2.1 (G̊arding, [26]). The polynomial P (ζ) is called hyperbolic in the
direction of a real vector ϑ ∈ V ′ if P0(ϑ) 6= 0, and P (ξ + ϑt) 6= 0 for all ξ ∈ V ′ and
for all t ∈ C with |Im t| large enough.

The set of all hyperbolic polynomials in the direction ϑ is denoted by hyp(ϑ) ⊂
C[V ′]. The homogeneous polynomials P (ζ) ≡ P0(ζ) in hyp(ϑ) are characterized by
the simple condition

ξ ∈ V ′ , Im t 6= 0 ⇒ P (ξ + ϑt) 6= 0 ,(2.1)

or, equivalently, the algebraic equation P (ξ+ϑt) = 0 has p = degP real roots with
respect to t for each ξ ∈ V ′. In addition, if these roots are pairwise distinct, unless
ξ is proportional to ϑ, P (ζ) is called strongly hyperbolic (or hyperbolic in the sense
of Petrovsky).

In the sequel, we will deal mainly with homogeneous hyperbolic polynomials.
We write Hyp(ϑ, p) for the space of such polynomials of degree p, and Hyp(ϑ) :=⋃
p≥0 Hyp(ϑ, p). Clearly, Hyp(ϑ) = Hyp(−ϑ). In view of (2.1), P (ζ)/P (ϑ) should

be real when P (ζ) ∈ Hyp(ϑ). Hence, if necessary, we may restrict Hyp(ϑ) to real
polynomials, HypR(ϑ) := Hyp(ϑ) ∩ R[V ′], without loss of generality.

The following lemmas collect some topological and algebraic properties of the
space Hyp(ϑ) (or rather HypR(ϑ)).

Lemma 2.2 (Nuij, [46]). The set Hyp◦R(ϑ, p) ⊂ HypR(ϑ, p) of strongly hyperbolic
polynomials is open in the space Rp[V ′] of all real homogeneous polynomials of
degree p, HypR(ϑ, p) ⊂ Hyp◦R(ϑ, p) being the part of the closure of this set where
P (ϑ) 6= 0.

Lemma 2.3 (G̊arding, [26]). The space Hyp(ϑ) is closed under the following op-
erations:

(a) multiplication:

P1, P2, . . . ∈ Hyp(ϑ) ⇒ P1P2 · · · ∈ Hyp(ϑ).(2.2)

(b) factorization:

Hyp(ϑ) 3 P = P1P2 · · · ⇒ P1, P2, . . . ∈ Hyp(ϑ).(2.3)

(c) polarization: If P ∈ Hyp(ϑ, p) and Pk(ζ) ∈ C[V ′] are polarizations of P in
the direction of ϑ, i.e. the coefficients of the polynomial P (ζ + ϑt) =

∑
tk Pk(ζ)

under ascending powers of t, then Pk ∈ Hyp(ϑ, p− k) , k = 0, . . . , p.
(d) localization: If P ∈ Hyp(ϑ) , ξ ∈ V ′, and Pξ(ζ) ∈ C[V ′] is a localization of

P at ξ, i.e. the lowest nonzero term of the polynomial

t 7→ P (ξ + tζ) = tµξPξ(ζ) +O(tµξ+1) , µξ = deg Pξ ,(2.4)

then Pξ ∈ Hyp(ϑ, µξ).

For the proof of Lemma 2.2 see [46]. The properties stated in Lemma 2.3 follow
essentially from the definition of hyperbolicity (2.1). The condition (2.2) implies
that Hyp(ϑ) is a multiplicative semigroup in the ring C[V ′].

Let P (ζ) ∈ Hyp(ϑ). Consider the algebraic hypersurface of real zeros of P :

Ξ := { ξ ∈ V ′ | P (ξ) = 0 } .(2.5)

Typically, the projective image of Ξ in RPn−1 consists of [p/2] possibly intersecting
real ovals embedded one into another and, in case of odd p, an extra projective
surface called ‘the unpaired piece’ (see Fig. 1).
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Figure 1. A real hyperbolic curve in RP2

The open connected component Γ(P, ϑ) of the real complement V ′ \ Ξ of Ξ,
containing the vector ϑ, is called the hyperbolicity cone of P . It is a basic property of
a hyperbolic polynomial P ∈ Hyp(ϑ) that Γ(P, ϑ) is a convex cone, and P ∈ Hyp(η)
for any η ∈ Γ(P, ϑ).

The dual cone for Γ(P, ϑ) with the vertex at a point x0 ∈ V ,

K(P, ϑ, x0) := {x ∈ V | (η, x− x0) ≥ 0 , ∀η ∈ Γ(P, ϑ)},(2.6)

is a closed convex affine set in V , referred to as the propagation cone of P . We
simply write K(P, ϑ) instead of (2.6), when x0 is not specified or x0 = 0.

When P (ζ) has a trivial lineality,5 i.e. Pξ(ζ) ≡ P (ζ) implies ξ = 0, the cone
Γ(P, ϑ) is proper (peaked) in the sense that Γ(P, ϑ) does not contain any straight
lines, and then K(P, ϑ, x0) has a non-empty interior K◦(P, ϑ, x0). More generally,
let Λ(P ) be a real lineality of P (ζ) ∈ Hyp(ϑ), i.e. the maximal linear subspace of
V ′ such that P can be restricted to a polynomial on the quotient V ′/Λ(P ). Then
Λ(P ) coincides with the edge of the hyperbolicity cone Γ(P, ϑ), so that Γ + Λ = Γ,
and K(P, ϑ) spans its orthogonal complement Λ⊥(P ) in V .

Let P ∈ Hyp(ϑ), and let ξ ∈ V ′ be fixed. Consider the localization Pξ of P at
ξ. By Lemma 2.3 (d), Pξ ∈ Hyp(ϑ), and we may define the local hyperbolicity and
the local propagation cones of P at ξ by setting, respectively,

Γξ(P, ϑ) := Γ(Pξ, ϑ), Kξ(P, ϑ, x0) := K(Pξ, ϑ, x0) .(2.7)

Clearly, Γξ(P, ϑ) ⊇ Γ(P, ϑ) and, hence, Kξ(P, ϑ, x0) ⊆ K(P, ϑ, x0) for all ξ ∈ V ′.
More precisely, the mapping (ξ, P ) 7→ Γξ(P, ϑ) (and (ξ, P ) 7→ Kξ(P, ϑ)) is inner
(resp., outer) continuous in the sense that Γξ(P, ϑ) ∩ Γξ̃(P̃ , ϑ) (resp., Kξ(P, ϑ) ∪
Kξ̃(P̃ , ϑ)) is close to Γξ(P, ϑ) (resp., Kξ(P, ϑ)) when (ξ̃, P̃ ) is close to (ξ, P ) with
ξ, ξ̃ ∈ V ′ and P, P̃ ∈ Hyp(ϑ).

5Such polynomials are called complete since they depend essentially on all n variables.
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The wave front surface W of a hyperbolic polynomial P ∈ Hyp(ϑ) is generated
by the union of local propagation cones:

W (P, ϑ, x0) :=
⋃

06=ξ∈V ′
Kξ(P, ϑ, x0) .(2.8)

When P is complete, i.e. Λ(P ) = {0}, W (P, ϑ) is a closed semi-algebraic part of
the global propagation cone K(P, ϑ) containing its boundary. More precisely,

∂K ⊆W ⊆ K ∩ Ξ′ ,

where Ξ′ :=
⋃

Λ⊥(Pξ) , ξ ∈ V ′\{0}, is a real dual of the hyperbolic hypersurface Ξ.
If P ∈ Hyp◦(ϑ) and Ξ is regular outside the origin, every nonzero ξ ∈ Ξ′ admits only
a one-dimensional space Λ⊥(Pξ) of real normals, nξ(P ) := dim Λ⊥(Pξ) = 1, half
of it being Kξ(P, ϑ). In that case, we have the equality W = K ∩ Ξ′. Otherwise,
when Ξ has singular points ξ 6= 0 with normals of a higher dimension, nξ(P ) > 1,
the surface W may be strictly smaller than K ∩ Ξ′. However, codimW (P, ϑ) = 1
in any case, since ξ ∈ Λ(Pξ) and, hence, each Kξ(P, ϑ, x0) in (2.8) lies in a proper
affine hyperplane normal to ξ 6= 0. Note also that, unlike Ξ′ , W (P, ϑ) depends on
P (outer) continuously.

For incomplete polynomials P ∈ Hyp(ϑ) with Λ(P ) 6= {0}, the wave front surface
W (P, ϑ) equals K(P, ϑ), as Pξ(ζ) ≡ P (ζ) for each ξ ∈ Λ(P ), and, hence, is not the
proper object to consider. Instead, one might define W (P, ϑ) by formula (2.8) with
union over ξ 6∈ Λ(P ). Then restriction to the quotient V ′/Λ(P ) would reduce the
situation to the previous case. In what follows we will therefore assume P ∈ Hyp(ϑ)
to be complete except where otherwise stated.

2.2. Hyperbolic operators in DG,m. Let G be a finite reflection group in V
of rank rkG ≤ n. Fix a real nonzero vector ϑ ∈ V ′ and consider the set of
homogeneous polynomials Hyp(ϑ) ⊂ C[V ′] hyperbolic in direction ϑ. The subset
of polynomials in Hyp(ϑ) invariant under the natural representation of G will be
denoted by

Hyp(ϑ)G := Hyp(ϑ) ∩ C[V ′]G .(2.9)

According to Lemma 2.3 (a), Hyp(ϑ)G is a multiplicative semigroup in the ring
C[V ′]. We will usually assume ϑ to be chosen in such a way that (2.9) contains
some polynomials of positive degrees (not only constants). A few explicit examples
of hyperbolic polynomials with a reflection group invariance are given below.

Example 2.4. The set Hyp(ϑ, 0) consists of all non-vanishing constants, so that
Hyp(ϑ, 0)G ≡ Hyp(ϑ, 0) holds trivially for any G and any ϑ ∈ V ′ \ {0}.

Example 2.5. A linear form v∗ = (v, ·) , v ∈ V , belongs to Hyp(ϑ, 1) if and only
if (v, ϑ) 6= 0. Hence, Hyp(ϑ, 1)G consists of all linear polynomials v∗(ζ) ∈ C[V ′]
such that (v, ϑ) 6= 0 and (v, α) = 0 for all α ∈ <(G). Clearly, when G is essential,
i.e. rk G = n, Hyp(ϑ, 1)G is empty.

Example 2.6. A quadratic polynomial P ∈ C[V ′] belongs to Hyp(ϑ, 2) if and only
if the quadric P (·)/P (ϑ) has a Lorentzian signature (−,+, . . . ,+, 0, . . . , 0) and ϑ is
a time-like vector relative to it. In particular, if P ∈ Hyp(ϑ, 2) is complete, then it
is strongly hyperbolic, P ∈ Hyp◦(ϑ, 2), and may be reduced to the canonical form

P (ζ) := −(ζ1)2 + (ζ2)2 + . . .+ (ζn)2(2.10)
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with ϑ := (±1, 0, . . . , 0) as a hyperbolicity direction. In that case, any finite re-
flection group G0 of rank rkG0 ≤ n− 1 preserving ϑ leaves (2.10) invariant. More
generally, P ∈ Hyp(ϑ, 2)G if G = G0 ×G1 with G1

∼= Z2 generated by reflection in
ϑ⊥ ⊂ V .

Example 2.7. Suppose that rkG ≤ n − 1 and ϑ ∈ V ′ \ {0} is G-invariant. Then
Hyp(ϑ) is an invariant subset in C[V ′]. Indeed, if P (ζ) ∈ Hyp(ϑ), then

P (g−1(ξ + ϑt)) = P (g−1(ξ) + ϑt) 6= 0,

when Im t 6= 0 and ξ ∈ V ′, since g−1(ξ) ∈ V ′ is real (for all g ∈ G) and the
hyperbolicity condition (2.1) holds.

Now we may construct Hyp(ϑ)G ⊂ Hyp(ϑ) using the properties of hyperbolic
polynomials stated in Lemma 2.3. First, we define a homomorphism of semigroups
Hyp(ϑ)→ Hyp(ϑ)G , P 7→ PG , by (multiplicative) averaging over G:

PG(ζ) :=
∏
g∈G

P (g(ζ)) .(2.11)

Clearly, when P ∈ Hyp(ϑ), PG is G-invariant and ϑ-hyperbolic (as a product of
hyperbolic polynomials).

Second, we may polarize any P ∈ Hyp(ϑ, p)G by setting (see Lemma 2.3 (c))

P (ζ + ϑt) =
p∑
k=0

tkPk(ζ) .(2.12)

Then, each polar Pk(·) ∈ Hyp(ϑ, p− k)G, since ϑ is a G-invariant vector. Further,
if P ∈ Hyp(ϑ)G (take, e.g., (2.11)) admits a polynomial factorization (2.3), then
each G-invariant factor also belongs to Hyp(ϑ)G.

Example 2.8. To give an illustration to the previous example, consider the sym-
metric group G ∼= An−1 with a root system < canonically realized in V ′ ∼= Rn. Fix
ϑ = (1, 1, . . . , 1) and let Pn(ζ) := ζ1ζ2 · · · ζn ∈ R[ζ]. Clearly, Pn(·) ∈ Hyp(ϑ, n). On
the other hand, ϑ and Pn are both invariant under all coordinate permutations, and
hence Pn ∈ Hyp(ϑ, n)G. The polarization (2.12) of Pn along ϑ gives precisely the
elementary symmetric functions Pk(ζ) :=

∑
ζ1ζ2 · · · ζk. Hence, Pk ∈ Hyp(ϑ, k)G

for each k = 0, 1, . . . , n . In particular, P2(ζ) := ζ1ζ2 + ζ1ζ3 + · · · is a second order
wave polynomial which takes the canonical form (2.10) after a proper change of
coordinates. In connection with the approximation theory of hyperbolic equations
these symmetric polynomials were studied in [43] (see also [13]). Similar exam-
ples of ’elementary’ invariant polynomials with the hyperbolicity property can be
constructed for other classical root systems.

Example 2.9. Let G be a finite reflection group on V ∼= V ′ with a root system
<. Fix a total ordering on V , and single out an open connected component Γ+

in Vreg := V \
⋃
α⊥ , α ∈ <, consisting of positive vectors. Then Γ+ is a conical

domain in V , referred to as a positive Weyl chamber. Consider

P (ζ) :=
∏
α∈<

(α, ζ) ,(2.13)

a discriminant polynomial of the group G. Then P (·) is both G-invariant and
hyperbolic with respect to any vector ϑ ∈ Γ+ (so that Γ+ is a (global) hyperbolicity
cone of P ). Hence, P ∈ Hyp(Γ+, p)G, where p := |<| is the total number of roots
in the system <.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3754 YURI BEREST

The object of our study is a class of linear differential operators defined as an
image of Hyp(ϑ)G ⊂ C[V ′] under the composition of mappings

C[V ′] ∇m−→Wm
Res−→ DG,m .(2.14)

The notation used in (2.14) has been explained in Section 1 : G is a finite reflection
group of rank rkG ≤ n on V , m ∈M(G) is a multiplicity function on a root system
<(G) associated to G, ∇m and Res are the Dunkl and Heckman maps related to
the pair (G,m). More precisely, we set

D
G,m
Hyp := {L ∈ D

G,m | L = Res∇mP (−iζ) , P (·) ∈ Hyp(ϑ)G} .(2.15)

By construction, the elements of D
G,m
Hyp are G-invariant linear partial differential

operators with constant principal symbols P ∈ Hyp(ϑ)G and rational lower order
coefficients with singularities located on reflection hyperplanes α⊥ ⊂ V of the group
G.

Example 2.10. Choose ϑ ∈ V ′, ϑ 6= 0, to be a G-invariant vector in V ′, and let
P ∈ Hyp(ϑ, 2)G be a complete second order wave polynomial. Then, it follows from
(1.13) that

L := Res∇mP (−iζ) = �n +
∑
α∈<+

mα(mα + 1)(α, α)
(α, x)2

.(2.16)

The operator (2.16) can be interpreted as a generalization of the classical Euler-
Poisson-Darboux (EPD) operator (rkG = 1) to higher rank root systems (rkG ≤
n− 1).

The differential operators in D
G,m
Hyp are not automatically hyperbolic, even though

their principal symbols P belong to Hyp(ϑ). The latter is only known as a necessary
condition of hyperbolicity for

L := P (D) +
∑
ν<p

aν(x)Dν , D := −i ∂
∂x

,(2.17)

with (locally) smooth coefficients under lower order derivatives aν(·) ∈ C∞(Ω),
Ω ⊂ V . In general, one has to impose additional restrictions (either on the singular
points of the hyperbolic hypersurface Ξ(P ) or on the lower terms added) in order to
guarantee the existence of a proper fundamental solution with conic support (‘in-
trinsic’ hyperbolicity). In fact, the operator (2.17) is hyperbolic for arbitrary lower
order terms, only if P ∈ Hyp◦(ϑ). For P ∈ Hyp(ϑ) with multiple characteristics
the situation is more delicate: addition of (even constant) lower terms may lead to
the loss of hyperbolicity (see, e.g., [42], [54]). It goes beyond the purposes of the
present paper to investigate precise conditions under which the operators in D

G,m
Hyp

are hyperbolic in the case of arbitrary multiplicities m ∈ M . For our needs the
following result (to be proved in the next section) is sufficient.

Theorem 2.11. Let Ω be an open connected set in Vreg = V \
⋃
α⊥, α ∈ <,

and let m ∈ M be a fixed multiplicity function on <. Denote by {m} ∈ M the
fractional part of m, so that 0 ≤ {mα} < 1 for all α ∈ <. Then, the operator
Lm := Res∇mP (−iζ) ∈ D

G,m
Hyp is hyperbolic in Ω if and only if this is true for

L{m} ∈ D
G,{m}
Hyp .
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Corollary 2.12. Let m ⊂ M be a lattice of integer-valued multiplicity functions
in M . Then, for any fixed m ∈ m, the set D

G,m
Hyp is a multiplicative semigroup of

hyperbolic operators isomorphic to Hyp(ϑ)G.

2.3. Riesz kernels. Let D(Ω) ⊂ C∞(Ω) be the space of all complex-valued C∞-
functions on V with supports compactly embedded in an open set Ω ⊆ V , and let
D′(Ω) be the corresponding space of distributions. When Ω = V , we usually omit
the parentheses in this notation.

Suppose that Ω ⊂ Vreg is an open connected subset in Vreg. Then, using the
identification (1.12), we may (and will) regard D′(Ω) as a left unitary D-module on
V Creg.

Definition 2.13. The Riesz kernel of a regular differential operator L ∈ D with a
constant hyperbolic principal symbol P ∈ Hyp(ϑ) is a holomorphic (entire analytic)
mapping Φ±· (L) : C→ D′(Ω) with values in the space of distributions on Ω ⊂ Vreg,
such that

(i) supp Φ±λ (L, x, x0) ⊆ ±K(P, ϑ, x0) ,

(ii) L
[
Φ±λ (L, ·, x0)

]
(x) = Φ±λ−1(L, x, x0) ,

(iii) Φ±0 (L, x, x0) = δ(x− x0) ,

(2.18)

for any fixed x0 ∈ Ω.

The operators L for which the kernel Φ±λ (L) exists and is uniquely determined
(up to inessential factors depending only on λ) will be called properly hyperbolic.
We will write DHyp ⊂ D for the class of such operators.

The value of a Riesz kernel λ 7→ Φ±λ (L, x, x0) at λ = 1 is a fundamental solution
Φ±(L, x, x0) of the differential operator L with support in ±K(P, ϑ, x0). Such a
solution is clearly unique, and, following [57], we call it the principal fundamental
solution of L.

The classical example of a Riesz kernel [26] is the following family of homogeneous
distributions Φ±· (P ) : C→ D′ associated to a hyperbolic polynomial P ∈ Hyp(ϑ):

λ 7→ Φ±λ (P, x) := (2π)−n
∫
V ′

P (ζ)−λ ei(x,ζ) dξ ,(2.19)

where ζ := ξ + iη ∈ T±(P, ϑ) and T±(P, ϑ) := V ′ ∓ iΓ(P, ϑ) is a tube domain in
V ′C spanned over the (global) hyperbolicity cone of P . Since |P (ζ)| has no zeros
and argP (ζ) is continuous and single-valued on T±(P, ϑ) (once argP (±ϑ) is fixed),
the definition of the complex power P (ζ)−λ offers no difficulties, and the inverse
Fourier-Laplace integral in (2.19) is absolutely convergent (in the distribution sense)
for all λ ∈ C. By Cauchy’s theorem, this integral is independent of Im ζ ∈ ±Γ(P, ϑ).
In fact, we have

Φ±λ (P, x) = F−1[P±(ξ)−λ] ,(2.20)

where F−1 stands for the inverse Fourier transform on V and P±(ξ)λ ∈ S′ is
definied as a temperate distribution on V ′ by the (weak) limit

P±(ξ)λ := lim
ε→+0

P (ξ ∓ iεη)λ , η ∈ Γ(P, ϑ) , λ ∈ C .(2.21)

For later convenience, we summarize the basic analytic properties of distributions
Φ±λ (P, ·) in the following lemma.
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Lemma 2.14 (cf.[2], [26]). Let P ∈ Hyp(ϑ, p). Then, the mapping Φ±· (P ) : C →
D′ , λ 7→ Φ±λ (P, x), is entire analytic and the following properties hold:

Φ±λ (P, κx) = κλp−n Φ±λ (P, x) , κ > 0 ,(2.22)

supp Φ±λ (P, x) ⊆ ±K(P, ϑ) ,(2.23)

sing supp Φ±λ (P, x) ⊆ ±W (P, ϑ) ,(2.24)

P (D) Φ±λ (P, x) = Φ±λ−1(P, x) ,(2.25)

Φ±0 (P, x) = δ(x) .(2.26)

The formulas (2.22), (2.25), (2.26) follow immediately from (2.19); (2.23) is a
direct consequence of the Paley-Wiener-Schwartz theorem applied to (2.20). The
inclusion (2.24) means that the Riesz kernel distribution can be restricted to a
C∞-function on any open connected subset in V outside the wave front surface
±W (P, ϑ). In fact, as we will see below, Φ±λ (P, x) is even locally holomorphic in x
everywhere in V \ ±W (P, ϑ).

The purpose of this section is to construct an explicit representation for the
Riesz kernel of a properly hyperbolic differential operator L in D

G,m
Hyp . This will be

done in terms of distributions Φ±λ (P, ·) associated with the hyperbolic polynomial
P ∈ Hyp(ϑ)G, the principal symbol of L.

First, we introduce some convenient notation. Let ad : D × D → EndC(D)
denote a bilinear map which associates to a pair of operators L,L0 ∈ D a C-linear
endomorphism on the space D:

ad(L,L0) : D→ D, Θ 7→ ad(L,L0)[Θ] ,(2.27)

such that

ad(L,L0)[Θ] := LΘ−ΘL0 .(2.28)

Given N ∈ Z+, we write adN (L,L0) : D→ D for the N -th iteration of (2.27):

adN (L,L0) := ad(L,L0) ◦ adN−1(L,L0)(2.29)

with the additional convention ad0(L,L0) ≡ id.

Lemma 2.15. Let L0,L ⊂ D be linear differential operators defined in a domain
Ω ⊂ Vreg, and let L0 ⊂ DHyp be properly hyperbolic. Suppose that there exist a
regular function Θ(x) ∈ O, regarded as a (multiplication) operator in D, and a
non-negative integer N ∈ Z+, such that Θ(x) 6= 0 on Ω and

adN+1(L,L0)[Θ(x)] = 0 identically in D .(2.30)

Then, L is also a properly hyperbolic operator, L ⊂ DHyp, with the same principal
symbol as L0, and the following relation between the Riesz kernels of L and L0

holds:

Φ±λ (L, x, x0) = Θ(x0)−1
N∑
k=0

(−1)k
(λ)k
k!

adk(L,L0)[Θ(x)] Φ±λ+k(L0, x, x0) ,(2.31)

where (λ)k := Γ(λ+ k)/Γ(λ) , λ ∈ C.
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Proof. Let z ∈ C be an auxiliary complex variable. Define

Sx,z :=
N∑
k=0

(−1)k

k!
adk(L,L0)[Θ(x)]

∂k

∂zk
(2.32)

as a differential operator on D′(Ω)⊗ C[[z]]. Then, equation (2.30) is equivalent to
the operator identity

(L − z)Sx,z = Sx,z (L0 − z) .(2.33)

Indeed, in view of definitions (2.28), (2.29) and (2.32), we have

(L − z)Sx,z − Sx,z (L0 − z) =
(−1)N

N !
adN+1(L,L0)[Θ(x)]

∂N

∂zN
.

Further, if λ 7→ Φ±λ (L0, x, x0) is a Riesz kernel of L0 ⊂ DHyp, and x0 ∈ Ω is fixed,
we construct a map

Φ±· (L0, x, x0; z) : C→ D′(Ω)⊗ C[[z]] ,

letting

λ 7→ Φ±λ (L0, x, x0; z) :=
∞∑
k=0

(λ)k
k!

Φ±λ+k(L0, x, x0) zk .(2.34)

Clearly, (2.34) is (termwise) holomorphic in λ, and the following properties hold:

(L0 − z)[Φ±λ (L0, ·, x0; z)](x) = Φ±λ−1(L0, x, x0; z),(2.35)

limλ→0 Φ±λ (L0, x, x0; z) = δ(x− x0),(2.36)

in virtue of (2.18), (2.34). Note that evaluation of Φ±λ (L0, x, x0; z) at z = 0 gives
precisely the Riesz kernel Φ±λ (L0, x, x0).

Now, setting

Φ±λ (L0, x, x0; z) := Θ(x0)−1 Sx,z[Φ±λ (L0, · , x0, · )](x, z) ,(2.37)

we observe that (2.35), (2.36) are valid also for (2.37), when L0 is replaced by L.
Indeed, the first equation

(L − z)[Φ±λ (L, ·, x0; z)](x) = Φ±λ−1(L, x, x0; z)(2.38)

follows from (2.35), (2.33) and the fact that Sx,z does not depend explicitly on λ,
while the second condition

limλ→0 Φ±λ (L, x, x0; z) = δ(x− x0)(2.39)

is a consequence of (2.36) and the inner structure of the operator Sx,z (the ∂z-free
term of Sx,z is a multiplication by the non-vanishing function Θ(x) and, hence, a
globally invertible operator on D′(Ω)).

It follows from (2.38) and (2.39) that

Φ±λ (L, x, x0) := Φ±λ (L, x, x0; 0)(2.40)

satisfies axioms (ii), (iii) of definition (2.18). On the other hand, the explicit for-
mula (2.31) derived upon substitution of (2.32), (2.34) into (2.37) and (2.40) shows
that condition (i) holds as well. Hence, Φ±λ (L, x, x0) is a Riesz kernel of the operator
L, and L is properly hyperbolic. The lemma is proven.
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Lemma 2.16. Let m ∈ M , and let {m} ∈ M be the fractional part of m, 0 ≤
{mα} < 1 , α ∈ <. Then, there exist a non-negative integer Nm ∈ Z+ and a
(polynomial) function Θm ∈ C[V ], having no zeros in Vreg = V \

⋃
α⊥, such that

adNm+1(Lm,L{m})[Θm(x)] = 0(2.41)

for any Lm ∈ DG,m and L{m} ∈ DG,{m} corresponding to the same homogeneous
polynomial P ∈ C[V ′]G.

Proof. Consider first the case of non-negative multiplicities mα ≥ 0 , ∀α ∈ < .
Let ε ∈ Char(G) be an arbitrary character of G, and let θε ∈ C[V ]Gε be the

corresponding fundamental semi-invariant defined by (1.11). Regarding θε as a
multiplication operator on O, we have (by Lemma 1.5)

adNε+1
∇m(P )[θε] = 0 for any P ∈ C[V ′]G .(2.42)

It is easy to see, in fact, that Nε = | E+ | :=
∑

α∈<+
1ε(α).

Since θε maps OG to OGε , the restriction Res applied to both sides of (2.42) gives
(see Lemma 1.6)

Res
(

adNε+1
∇m(P )[θε]

)
= adNε+1(Lm−1ε ,Lm)[ θε ] = 0 ,(2.43)

where Lm := Res∇m(P ) and Lm−1ε := Resε∇m(P ). To justify the latter notation,
we observe that

Resε∇m(P ) = Res∇m−1ε(P ) , P ∈ C[V ′]G .(2.44)

Indeed, in view of formula (1.9) and Lemma 1.6, we have

Resε∇m(P ) =
∑
k≥0

1
2k k!

Resε adk∆m
[Pk] =

∑
k≥0

adkResε ∆m
[Pk] ,(2.45)

where Pk ∈ Ck[V ]G, while Resε ∆m satisfies (2.44) by a straightforward calculation.
When P ∈ C[V ′]G is homogeneous, Lm is formally self-adjoint (up to a sign

depending only on the degree of P ; see again (1.9)). Hence, we may interchange
Lm and Lm−1ε in (2.43):

adNε+1(Lm,Lm−1ε)[ θε(x) ] = 0 .(2.46)

Given a non-negative m ∈ M , we choose a finite set Im ⊂ Char(G) of G-
characters in such a way that

m = {m}+
∑
ε∈Im

1ε .(2.47)

Then, letting Nm :=
∑

1ε and Θm := C
∏
θε , C ∈ C\ {0}, with summation and

product over Im, one can verify the identity (2.41), lowering the values mα, step
by step, with the help of (2.46).

When mα < 0 for some α ∈ <, we may assume mα < −1 in view of (2.46). This
case reduces, in turn, to the case of positive mα, since each Lm ∈ DG,m depends
on the values of m only as mα(mα+1) (cf. (1.9), (1.13)), and, hence, it is invariant
under the involution mα 7→ −mα − 1. The lemma is proven.

The results of Lemma 2.15 and Lemma 2.16 imply the statement of Theo-
rem 2.11. In the sequel, with a view of studying lacunas, we will deal mainly
with differential operators Lm ∈ D

G,m
Hyp parameterized by integer multiplicities. By
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Corollary 2.12, they are all properly hyperbolic. In fact, we will restrict our con-
sideration to the case of non-negative mα ∈ Z+. Since DG,m = DG,−m−1, this does
not lead to any loss of generality.

Thus, we conclude this section with the following theorem.

Theorem 2.17. Let m ⊂M be a lattice of integer-valued multiplicity functions in
M , and let m+ := {m ∈ M | mα ∈ Z+ for all α ∈ <} denote its positive part.
Then, each Lm ∈ D

G,m
Hyp , m ∈ m+, is properly hyperbolic in any open connected

subset Ω ⊂ Vreg . The Riesz kernel of Lm and its principal fundamental solution
are given respectively by the formulas

Φ±λ (Lm) =
M∑
k=0

(−1)k
(λ)k
k!

adk(Lm,L0)[Θm(x)] Φ±λ+k(P, x− x0) ,(2.48)

Φ±(Lm) =
M∑
k=0

(−1)k adk(Lm,L0)[Θm(x)] Φ±k+1(P, x − x0) ,(2.49)

where Φ±λ (P, · ) are distributions (2.19) associated to a hyperbolic polynomial P ∈
Hyp(ϑ)G, the principal symbol Lm, and Θm(x) := θm(x)/θm(x0) with

θm(x) :=
∏
α∈<+

(α, x)mα(2.50)

and

M := deg θm =
∑
α∈<+

mα .(2.51)

Proof. The proof follows from Lemma 2.15 and Lemma 2.16.

3. Regular lacunas and Petrovsky’s condition

Let L be a properly hyperbolic differential operator with a constant principal
symbol P ∈ Hyp(ϑ), and let λ 7→ Φ±λ (L, x, x0) be a Riesz kernel associated with L.
We assume that L is defined in some open connected part Ω of V ∼= Rn and has
C∞-smooth (or locally analytic) coefficients thereon.

Definition 3.1. Let x0 ∈ Ω be fixed. An open connected set L±(x0) of
V \ ±W (P, ϑ, x0) is called a regular lacuna of the Riesz kernel Φ±λ (L, ·, x0) at a
point λ, if L±(x0) ⊂ Ω and L±(x0) ∩ supp Φ±λ (L, ·, x0) is empty.

Generically, the support supp Φ±λ (L, x, x0) entirely fills the interior±K◦(P, ϑ, x0)
of the propagation cone for almost all λ ∈ C. In this case the only regular lacuna of
Φ±λ lies in the complement V \±K(P, ϑ, x0), and it is referred to as the trivial lacuna.
The values of λ ∈ C for which Φ±λ (L, x, x0) has nontrivial lacunas are called singular.
For example, singular for any L are λ = 0,−1,−2, . . . , since Φ±−k(L, x, x0) =
Lk [δ(x− x0)] , when k ∈ Z+, as follows from (2.18).

The main concern in the classical theory of lacunas ([50], [2], [3]) is to study
the support structure of the principal fundamental distribution Φ±(P, ·) associated
to a hyperbolic polynomial P ∈ Hyp(ϑ). Thanks to Petrovsky’s work, the basic
idea in the theory is to represent the function Φ±(P, ·) locally (outside the wave
front surface ±W (P, ϑ)) as an Abelian integral of a rational form (with poles at
complex zeros of P ) over properly constructed cycles in the complex projective
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space CPn−1. The vanishing of the cycle relative to a point x ∈ ±K◦(P, ϑ) will
then imply the vanishing of Φ±(P, x) in the vicinity of x and, by analyticity, also
inside the whole component L± ⊂ ±K(P, ϑ) \ ±W (P, ϑ) containing this point.
This provides an effective link between the theory of lacunas and the topology of
projective algebraic surfaces in CPn−1.

In this section we employ a similar idea to study a lacunary structure of funda-
mental solutions for hyperbolic operators L in D

G,m
Hyp . It appears to be possible due

to formulas (2.48) and (2.49). Note that (2.48) (in conjunction with Lemma 2.14)
implies

sing supp Φ±λ (L, · , x0) ⊆W (P, ϑ, x0)(3.1)

for any Lm ∈ D
G,m
Hyp , m ∈ m+ , and λ ∈ C. This condition is natural and, in fact, it

is valid for a much wider class of hyperbolic operators. What is more specific is that
the kernel Φ±λ (L, · , x0) may admit non-trivial lacunas6 when Reλ > 0. Here, we
focus on a closer study of the principal fundamental solution (λ = 1). Our analysis
rests heavily on the work of Atiyah, Bott and G̊arding [2]. The reader is referred
to [2] for more analytical details.

Let
◦
V ′:= V ′ \ {0}. Given a polynomial P ∈ Hyp(ϑ, p) and a point x ∈ V , we

define a family V = V(x, P, ϑ) of C∞-smooth real vector fields v :
◦
V ′→ V ′ , ξ 7→

v(ξ), with the following characteristic properties. For each ξ ∈
◦
V ′ : (i) v(ξ) ∈

Γξ(P, ϑ) ∩X , where X stands for a real hyperplane in V ′ dual to the point x ∈ V ;
(ii) v(κξ) = |κ| v(ξ) , κ ∈ ◦R ; (iii) P (ξ ± iεv(ξ)) 6= 0, when 0 < ε ≤ 1.

When x 6∈ ±W (P, ϑ), the family V(x, P, ϑ) is not empty, and any two elements
of it are homotopic, i.e. may be deformed one into another through a C∞-mapping
[0, 1]→ V within the family V. Indeed, in view of definition (2.8), x ∈ W (P, ϑ) if

and only if (x,Γξ) ≥ 0 for at least one point ξ ∈
◦
V ′. Hence, x 6∈ ±W (P, ϑ) implies

the existence of vectors η∓ in Γξ(P, ϑ) such that (η−, x) < 0 while (η+, x) > 0,

and then, by convexity, Γξ(P, ϑ) ∩ X is not empty for any ξ ∈
◦
V ′. Further, the

homogeneity property (ii) is consistent with (i), since the local cone Γξ(P, ϑ) =
Γ(Pξ, ϑ) depends on the double ray

◦
Rξ only. The condition (iii) is achieved by

taking the elements v(ξ), satisfying (i) and (ii) with |v(ξ)| small enough when
|ξ| = 1. The homotopy of V follows essentially from the inner continuity of the
mapping (ξ, P ) 7→ Γξ(P, ϑ) (see [2], Lemma 6.7).

Now, when x 6∈ ±W (P, ϑ), we can replace the constant vector field ξ 7→ ∓Im ζ
in the Fourier-Laplace integral (2.19) by a smooth field ξ 7→ ∓v(ξ) ∈ V(x, P, ϑ)
homotopic to it, and then perform a radial integration with the use of the homo-
geneity (ii) of v(ξ). By Cauchy’s theorem, this does not alter the integral, since the
properties (i) and (iii) guarantee that the exponential in (2.19) will stay bounded
and ξ ∓ i v(ξ) will stay away from the complex zeros of P .

Assume first that pλ− n 6∈ Z+. Then the procedure outlined above gives

Φ±λ (P, x) = (2π)−n
∫

γ(ξ)=1

P (ζ)−λ χpλ−n
(
−i(x, ξ) + 0

)
ω(ζ) ,(3.2)

6 For example, this seems never to happen for the Riesz kernels (2.27) related to inhomogeneous
polynomials P ∈ hyp(ϑ) (cf. [2]–[3]).
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where x 6∈ ±W (P, ϑ) , ζ = ξ ∓ i v(ξ) with v(ξ) ∈ V(x, P, ϑ), and the integration is
understood in the distribution sense with the measure ω(ζ) defined by the Kronecker
(n− 1)-form

ω(ζ) :=
n∑
k=1

(−1)k−1 ζk dζ1 ∧ · · · ∧ dζk−1 ∧ dζk+1 ∧ · · · ∧ dζn .(3.3)

The function γ :
◦
V ′→ R+, ξ 7→ γ(ξ), is any smooth real positive function on

◦
V ′

absolutely homogeneous of degree 1, e.g. γ(ξ) = |ξ|. The distribution χs(it+ 0) ∈
D′(R) is defined (for any s ∈ C \ Z+) as a (weak) boundary limit of the complex
function

z 7→ χs(z) := Γ(−s) zs , s 6∈ Z+ ,(3.4)

holomorphic in the region Re z > 0.
To provide analytic continuation of the integral in (3.2) for all λ ∈ C, we notice

that χs(z), as a function of s, has simple poles at s = 0, 1, 2, . . . for any fixed z ∈ C
with Re z > 0. More precisely, when s ∈ Z+, we have the Laurent expansion

χs+t(z) = χos(z) t−1 + χs(z) +O(t) , t→ 0 ,(3.5)

where the constant term (denoted for convenience also by χs(z)) and the residue
χos(z) are given respectively by

χs(z) =
(−1)s+1

s!
zs

(
log z − Γ′(1)−

s∑
k=1

1
k

)
,(3.6)

χos(z) =
(−1)s+1

s!
zs .(3.7)

Now the required analytic continuation may be performed via the operation
χs → d

dt [ t χs+t ]t=0. The result reads

Φ±λ (P, x) = (2π)−n
∫

γ(ξ)=1

P (ζ)−λ χpλ−n
(
−i(x, ξ) + 0

)
ω(ζ)(3.8)

− (2π)−n

p

∫
γ(ξ)=1

P (ζ)−λ logP (ζ)χopλ−n
(
−i(x, ξ)

)
ω(ζ) .

Here, we put χos(z) ≡ 0 when s 6∈ Z+, while χs is defined either by (3.6) or by (3.4)
according to whether s ∈ Z+ or not.

The second integral in (3.8) vanishes unless pλ− n ∈ Z+, and it is a polynomial
in x otherwise. As an immediate consequence of formula (3.8), we note that the
function (λ, x) 7→ Φ±λ (P, x) is holomorphic in λ for all λ ∈ C and locally holomorphic
in x when x 6∈ ±W (P, ϑ) (cf. Lemma 2.14 and (2.24)).

Suppose that x 6∈ ∓K(P, ϑ) ∪ ±W (P, ϑ). Then −x 6∈ ±K(P, ϑ) and, according
to Lemma 2.14 and (2.23), Φ±λ (P,−x) ≡ 0. Setting

Φ±λ (P, x) = Φ±λ (P, x) − eiπ(pλ−n) Φ±λ (P,−x) ,
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we can eliminate (for all λ ∈ C) the ‘logarithmic term’ in (3.8):

Φ±λ (P, x) =
i

(2π)n−1

∫
γ(ξ)=1

P (ζ)−λ %pλ−n
(
(x, ξ)

)
ω(ζ) ,(3.9)

where %s(t) ∈ D′(R) is defined by

2πi %s(t) := χs(−it+ 0)− eiπs χs(it+ 0) , s ∈ C .(3.10)

For (2.49) one needs to evaluate the Riesz kernel Φ±λ (P, x) at real integer points
λ ∈ Z. More explicit formulas for the distribution %s(t) in that case are given by

%s(t) =
1
2

(it)s

s!
sgn t , s = 0, 1, 2, . . . ,(3.11)

%s(t) = (−i)−sδ(−s−1)(t) , s = −1,−2,−3, . . . .(3.12)

In fact, the first formula (3.11) follows immediately from (3.6) and (3.10), while the
second follows from the first, if we observe that %′s = i %s−1 for all s ∈ C.

Letting λ = k , k ∈ Z+ \ {0}, in (3.9) and using (2.26), (2.27), we obtain the
following formulas for the distribution Φ±k (P, · ) localized in the vicinity of x 6∈
∓K(P, ϑ) ∪ ±W (P, ϑ):

Φ±k (P, x) =
i pk−n+1

2(2π)n−1(pk − n)!

∫
γ(ξ)=1

P (ζ)−k (x, ξ)pk−n sgn (x, ξ)ω(ζ) ,(3.13)

when pk ≥ n, and

Φ±k (P, x) = − (−i)n−pk+1

(2π)n−1

∫
γ(ξ)=1

P (ζ)−k δ(n−pk−1)((x, ξ))ω(ζ) ,(3.14)

when pk < n .
The next step is to associate with the family V(x, P, ϑ) certain cycles and relative

cycles in the complex projective space and to rewrite the right-hand sides of (3.13),
(3.14) as rational integrals over them.

Let P ∈ Hyp(ϑ), x ∈ V \ ±W (P, ϑ) and v(ξ) ∈ V(x, P, ϑ) be fixed as above.
Consider the integration chain in (3.13), (3.14):

γ∼ := { ξ ∈
◦

V ′ | γ(ξ) = 1 } ⊂ V ′ .(3.15)

We assume γ∼ to be oriented in such a way that the (n− 1)-form (x, ξ)ω(ξ) stays
positive on γ∼, while the space V ′ is endowed with the standard orientation dξ > 0.

Following [2], we define the smooth ‘complex shift’ map

σ±(x, v) :
◦

V ′→ V ′C , ξ 7→ ξ ∓ iv(ξ) ,(3.16)

and consider the image of the chain γ∼ in V ′C under (3.16):

σ±(x, v; γ∼) := Imσ± [ γ∼ ] .(3.17)

Let

ΞC := { ζ ∈ V ′C | P (ζ) = 0 } , XC := { ζ ∈ V ′C | (x, ζ) = 0 }
be the complex counterparts of the real surfaces Ξ(P ) and X . Then σ±(x, v; γ∼) is a
relative cycle of the pair (V ′C\ΞC , XC\(XC∩ΞC)) oriented by ω(ζ) sgn(x,Re ζ) > 0.
By construction, σ±(x, v; γ∼) is homologous to γ∼ in V ′C\ΞC for any v ∈ V(x, P, ϑ).
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Since the mapping ξ 7→ v(ξ) is absolutely homogeneous (of degree 1), it is relevant
to project the cycle (3.17) onto CPn−1:

σ∗±(x, v; γ∼) := Imπ[σ±(x, v; γ∼) ](3.18)

via the canonical surjection π : Cn \ {0} → CPn−1 .
Let Ξ∗C and X∗C stand for the projective images of ΞC and XC in CPn−1. A

representative of the relative homology class

[σ∗±(x)] ∈ Hn−1(CPn−1 \ Ξ∗C , X
∗
C \ (X∗C ∩ Ξ∗C) ;C)(3.19)

generated by (3.18) is called the relative Petrovsky cycle.
Since the family V(x, P, ϑ) is one homotopy class, [σ∗±(x)] does not depend on

the choice of v ∈ V. Moreover, the homology class [σ∗±(x)] is also independent of
γ∼ and locally independent of x ∈ V \±W (P, ϑ). This justifies the notation (3.19).

Taking the boundary of [σ∗±(x)],

∂[σ∗±(x)] ∈ Hn−2(X∗C \ (X∗C ∩ Ξ∗C) ; C),(3.20)

gives an (absolute) homology in X∗C\(X∗C∩Ξ∗C). The absolute Petrovsky cycle β∗±(x)
is then defined as a representative of the class

[β∗±(x)] :=
1
2

t∗x ∂[σ∗±(x)] ∈ Hn−1(CPn−1 \ (X∗C ∪ Ξ∗C) ; C) ,(3.21)

where t∗x denotes the map induced on homology by the Leray tube operation tx

from X∗C \ (X∗C ∩Ξ∗C) to CPn−1 \ (X∗C ∪ Ξ∗C). The operation tx associates with each
point ζ ∈ X∗C \ (X∗C ∩ Ξ∗C) the boundary of a small neighborhood of this point in
the real 2-plane in CPn−1 orthogonal to X∗C at ζ. More precisely, given a compact
chain σ ⊂ XC \ (XC ∩ ΞC) , tx σ can be viewed as a product { |(x, ζ)| = ρ } × σ
with ρ so small that tx σ ⊂ Cn \ ΞC. The orientation of tx σ is a product of the
orientation of the complex plane with coordinate (x, ζ) and the orientation of σ.

Now let pk ≥ n and return to the first integral formula (3.13). Clearly,∫
γ(ξ)=1

P (ζ)−k (x, ξ)pk−n sgn (x, ξ)ω(ζ) =
∫

σ±(x,v;γ∼)

P (ζ)−k (x, ζ)pk−n ω(ζ)(3.22)

with ζ = ξ ∓ iv(ξ) as an integration variable. The integrand in the right-hand side
of (3.22) has the form F (ζ)ω, where F (ζ) is a rational function in ζ homogeneous
of degree −n. Such a differential form is invariant under coordinate changes ζj →
f(ζ) ζj and, hence, is a pull-back of a differential form on CPn−1 under the canonical
projection π : Cn \ {0} → CPn−1.

Letting ζ = (ζ1 : . . . : ζn) denote homogeneous coordinates in CPn−1, we get
from (3.18) and (3.22)

Φ±k (P, x) =
πi pk−n+1

(2π)n(pk − n)!

∫
σ∗±(x)

P (ζ)−k (x, ζ)pk−n ω(ζ) ,(3.23)

where σ∗±(x) is a relative Petrovsky cycle corresponding to the point x 6∈
∓K(P, ϑ) \ ±W (P, ϑ), and ω(ζ) is the Kronecker form on CPn−1 given (in terms
of homogeneous coordinates) by (3.3). The integral (3.23) depends only on the ho-
mology class [σ∗±(x)] of the cycle σ∗±(x) in Hn−1(CPn−1 \Ξ∗C , X

∗
C \ (X∗C ∩ Ξ∗C) ;C),

since its integrand is a closed form of highest degree holomorphic on CPn−1 \ Ξ∗C .
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Consider the opposite case pk < n. Formula (3.14) implies

Φ±k (P, x) = − i
n−pk+1

(2π)n−1

∫
1
2 ∂σ±(x,v;γ∼)

(x, ∂/∂ζ)n−pk−1 P (ζ)−k ωX(ζ) ,(3.24)

where the integration is taken over the (n− 2)-cycle on XC \ (XC ∩ ΞC)

1
2
∂σ±(x, v; γ∼) := { ζ = ξ ∓ iv(ξ) | ξ ∈ X ∩ γ∼ }(3.25)

with a Leray measure7 ωX > 0 associated with the real hyperplane X :

ω(ξ) = d(x, ξ) ∧ ωX(ξ) +O((x, ξ)) .

The Cauchy residue formula applied to (3.24) gives

Φ±k (P, x) = − i
n−pk (n− pk − 1)!

(2π)n

∫
P (ζ)−k (x, ζ)pk−n d(x, ζ) ∧ ωX(ζ)(3.26)

with integration over the product chain

β±(x, v; γ∼) :=
1
2
{ |(x, ζ)| = ρ } × ∂σ±(x, v; γ∼) , ρ > 0 small enough ,(3.27)

oriented by ω(Re (x, ζ) , Im (x, ζ)) ∧ ωX(ζ) > 0.
In view of homogeneity the integrand in (3.26) can be written in terms of homo-

geneous coordinates in CPn−1 (see the argument following equation (3.22)). Then
the projective image β∗± of (3.27) represents the homology class (3.21) and, hence,
is an absolute Petrovsky cycle. As in the previous case, the result of integration
will be independent of the choice of an individual representative in [β∗±(x)] but
determined by the class [β∗±(x)] as a whole. Thus, we have

Φ±k (P, x) = − i
n−pk (n− pk − 1)!

(2π)n

∫
β∗±(x)

P (ζ)−k (x, ζ)pk−n ω(ζ) ,(3.28)

when k ∈ Z+ \ {0} and pk < n .
Equations (3.23) , (3.28) are essentially the classical Herglotz-Petrovsky-Leray

formulas (cf. [2]). The following theorem gives a generalization of these formulas
for hyperbolic operators from the class D

G,m
Hyp .

Theorem 3.2. Let Lm ∈ D
G,m
Hyp , m ∈ m+ , and let P ∈ Hyp(ϑ, p)G be the principal

symbol of Lm . Fix x0 ∈ Ω ⊂ Vreg , and assume that x ∈ Ω and x 6∈ ∓K(P, ϑ, x0) ∪
±W (P, ϑ, x0). Then, the principal fundamental solution Φ±(Lm, x, x0) is holomor-
phic in the vicinity of x and is determined by the following formulas:

Φ±(x, x0) =
M+1∑
k=1

Ck adk−1(Lm,L0)[Θm]
∫
β̄∗±

P (ζ)−k (x̄, ζ)pk−n ω(ζ) ,(3.29)

7For the precise definition of Leray form associated with a regular hypersurface see, e.g., ref.
[29], Ch.III.
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when M < n/p− 1 ,

(3.30) Φ±(x, x0) =
[n−1
p ]∑

k=1

Ck adk−1(Lm,L0)[Θm]
∫
β̄∗±

P (ζ)−k (x̄, ζ)pk−n ω(ζ)

+
M+1∑

k=[n−1
p ]+1

C̃k adk−1(Lm,L0)[Θm]
∫
σ̄∗±

P (ζ)−k (x̄, ζ)pk−n ω(ζ)

when 0 < n/p− 1 ≤M , and

Φ±(x, x0) =
M+1∑
k=1

C̃k adk−1(Lm,L0)[Θm]
∫
σ̄∗±

P (ζ)−k (x̄, ζ)pk−n ω(ζ) ,(3.31)

when n ≤ p . Here, the integration is carried out over an absolute β̄∗± := β∗±(x̄) and
a relative σ̄∗± := σ∗±(x̄) Petrovsky cycle associated with the point x̄ = x − x0 (as
defined in (3.19) and (3.21)); the constants Ck and C̃k are given explicitly by

Ck :=
(−1)k in−pk (n− pk − 1)!

(2π)n
, C̃k :=

(−1)k−1 i pk−n+1 π

(2π)n (pk − n)!
,

and Θm ∈ D is a multiplication operator by θm(x)/θm(x0) with the same θm(x)
and M as in Theorem 2.17 (see (2.50) and (2.51)).

Proof. Formulas (3.29)–(3.31) follow from Theorem 2.8 and (3.23), (3.28). By con-
struction, all Lm have rational coefficients with poles located only on hyperplanes
α⊥ , α ∈ < . Hence, so do the differential operators adk(Lm,L0)[θm(x)] . This en-
sures analyticity of Φ±(Lm, x, x0), when x stays away from movable (±W (P, ϑ, x0))
and fixed (

⋃
α⊥ , α ∈ < ) singularity loci.

As in the classical case, the importance of the Herglotz-Petrovsky type formu-
las (3.29)–(3.31) is that they provide sufficient conditions for existence of regular
lacunas.

Corollary 3.3. Let Lm ∈ D
G,m
Hyp , m ∈ m+ , and let P ∈ Hyp(ϑ, p)G, the principal

symbol of Lm , be a complete polynomial. Suppose that∑
α∈<+

mα <
n

p
− 1 ,(3.32)

and

∂[σ∗±(x̄)] = 0 in Hn−2(X̄∗C \ (X̄∗C ∩ Ξ∗C) ; C)(3.33)

relative to some point x ∈ ±K(P, ϑ, x0) \±W (P, ϑ, x0). Then, the open component
L±(x0) ⊂ ±K(P, ϑ, x0) \ ±W (P, ϑ, x0) containing this point is a regular lacuna of
the distribution Φ±(Lm, x, x0).

Proof. When m ∈ m+ satisfies condition (3.32), the fundamental solution of Lm is
determined by (3.29). The class [σ∗±(x̄)] is locally independent of x (provided x0 is
fixed); hence the same is true for ∂[σ∗±(x̄)] and [β∗±(x̄)]. On the other hand, if (3.33)
holds, then [β∗±(x̄)] = 0, and each term in the sum (3.29) vanishes in the vicinity
of x. By analytical continuation, this must also be valid in the entire component
L±(x0) outside the singularity loci. The proof is finished.
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Remark 3.4. Equation (3.33) is referred to as Petrovsky’s condition in the form of
Atiyah, Bott and G̊arding. The stronger requirement

[σ∗±(x̄)] = 0 in Hn−1(CPn−1 \ Ξ∗C , X̄
∗
C \ (X̄∗C ∩ Ξ∗C) ;C)(3.34)

connected with (3.30) and (3.31) would also imply that x belonged to a regular
lacuna for Lm, even though (3.32) were not satisfied. This is indeed the case when
x 6∈ ±K(P, ϑ, x0), since then we may choose v(ξ) = γ(ξ)η ∈ V(x̄, P, ϑ) with η ∈
Γ(P, ϑ)∩X̄ in (3.18), so that the homotopy ξ∓iγ(ξ)η→tξ∓iγ(ξ)η, t∈ [0,1], contracts
σ∗±(x̄, v; γ∼) in CPn−1 \Ξ∗C to the point (∓iγ(ξ)η)∗ in X̄∗C \ (X̄∗C∩Ξ∗C). However,
as shown in [3], the class [σ∗±(x, v; γ∼)] has a nonzero intersection number with
[Γ∗(P, ϑ)] ∈ Hn−1(CPn−1 \Ξ∗C , X̄

∗
C \ (X̄∗C ∩Ξ∗C) ;C) when x is inside ±K(P, ϑ, x0)

and, hence, cannot vanish in that case. Thus, (3.34) characterizes essentially the
trivial lacunas.

Remark 3.5. If the Petrovsky condition (3.33) holds for some P ∈ Hyp(ϑ, p)G but
inequality (3.32) does not, the corresponding component L±(x0) is a weak lacuna
of Φ±(Lm, · , x0) . More precisely, when restricted to L±(x0), Φ±(Lm, x, x0) is a
rational function in x and x0 of homogeneity p− n,

Φ±(Lm, κx, κx0) = κp−n Φ±(Lm, x, x0) , κ > 0 .(3.35)

Indeed, if (3.32) is not valid, we have pk − n ≥ 0 for some k ∈ Z+ , k ≤ M + 1 ,
and then Φ±k (P, x̄) is a polynomial on L±(x0) of degree pk − n homogeneous in x̄.
This follows from Herglotz-Petrovsky-Leray type formulas for higher derivatives of
Φ±k (P, · ),

DνΦ±k (P, x̄) ∼
∫

β∗±(x̄)

P (ζ)−k ζν (x̄, ζ)pk−|ν|−n ω(ζ) , |ν| > pk − n ,(3.36)

which can be derived along the same lines as (3.31). In view of Lemma 1.4 (c) and
definitions (2.15), (2.27), the operator θm(x0)−1 adk−1(Lm,L0)[θm(x)] ∈ D acting
on Φ±k (P, x̄) decreases its homogeneity by p(k−1) . As a result, each non-vanishing
term in (3.30) or (3.31) is a rational function of degree (pk−n)−p(k−1) = p−n .

In general (cf. [2]), one can characterize a weak lacuna L±(x0) by the property
that the fundamental distribution Φ±(L, x, x0) admits a C∞-extension from L±(x0)
to L±(x0) ∩ U(x0) for some open neighborhood U(x0) ⊂ Ω of the point x0 . With
this definition, if L±(x0) is a regular weak lacuna of Lm , then Φ±(Lm, x, x0) is a
rational function of homogeneity p−n therein. Indeed, it is immediate from (2.49)
that any regular weak lacuna L±(x0) of Lm is a regular weak lacuna of its principal
part P (D). This implies that all derivatives ( ∂∂tx)νΦ±k (P, tx̄) are bounded when
t→ 0, provided x is kept in L±(x0). In view of homogeneity (Lemma 2.14, (2.22)),
we have in that case

t|ν|+n−pk(
∂

∂t
x)νΦ±k (P, tx̄)→ (

∂

∂x
)νΦ±k (P, x̄) as t→ 0,

and hence, (∂/∂x)νΦ±k (P, x̄) = 0 when |ν| > pk−n. So Φ±k (P, x̄) is a homogeneous
polynomial (in x̄) of degree pk − n in L±(x0). Then, by our previous argument,
Φ±(Lm, x, x0) is a rational function in this domain.

Remark 3.6. The importance of the Petrovsky condition (3.33) for operators with
constant coefficients is that it is both necessary and sufficient, at least when a
certain stability of lacunas is required. To be precise, a (weak) lacuna L±(P ) for
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P ∈ Hyp(ϑ) is called stable if every P̃ ∈ Hyp(ϑ) close enough to P has a (weak)
lacuna L±(P̃ ) such that L±(P ) ∩ L±(P̃ ) tends to L±(P ) (i.e., absorbs any compact
subset of L±(P )) as P̃ tends to P . Petrovsky [50] proved that if P ∈ Hyp◦(ϑ) and
Ξ∗ is regular, then every stable (weak) lacuna of Φ±(P, · ) satisfies (3.33). Atiyah,
Bott and G̊arding [3] extended this result to the case of non-strongly hyperbolic
polynomials in a somewhat weaker form: if a component L± is a regular (weak)
lacuna of Φ±k (P, · ) for some sufficiently large k ∈ Z+, then L± is stable and (3.33)
holds for every point x in L±. However, when p ≥ n, there are no stable strong
lacunas inside ±K(P, ϑ). In particular, the only regular strong lacuna for all powers
of P is the trivial one. Applied to our case, this fact and the structure of formula
(2.49) show that there are no operators Lm which have non-trivial regular strong
lacunas for all values mα ∈ Z.

Remark 3.7. Following [2], [3], we a priori restricted our attention to regular la-
cunas, i.e. to those lying in components of the complement of the wave front
surface ±W . However, the singular support of the distribution Φ±(L, · , x0) may
happen to fill not all of ±W (P, ϑ, x0) (i.e., the inclusion (3.1) may be proper
when λ = 1). Then some extra lacunary domains may appear in components of
V \ sing supp Φ±(L) in addition to those in V \±W . Such lacunas are called irreg-
ular. For operators with constant coefficients, a few examples of this phenomenon
([25], [55]) are known in higher dimensions n > 4. However, when n ≤ 4 or when
Ξ∗ is regular enough, then we must have sing supp Φ±(P, ·) = ±W (P, ϑ), and all
lacunas have to be regular. Imposing stability also leaves only regular lacunas,
since no lacuna containing a piece of ±W can be stable. In the next section we will
give an example of a hyperbolic operator with variable coefficients which admits
irregular lacunas.

4. Examples and concluding remarks

The purpose of this section is to display a number of explicit examples of the
theory presented so far and to illuminate some of its implications.

First, we provide an illustration for Theorem 3.2 and Corollary 3.3. It should
be noted, with regard to Petrovsky’s condition (3.33), that only a sparse collection
of instances when (3.33) can be verified effectively is available, especially in large
dimensions.8 On the other hand, there are known examples of hyperbolic polyno-
mials (also few and far between) for which the Riesz kernel (2.19) can be evaluated
explicitly in terms of classical special functions and distributions [51], [25], [55]. As
shown in [30] (see also [31]), such kernels may be viewed as multidimensional ana-
logues of Riemann-Liouville fractional integrals associated with affine homogeneous
cones. Lacunary domains occurring in that case are, as a rule, irregular, and ver-
ification of Petrovsky’s condition appears to be a non-trivial topological problem.
The examples given below make use of both of these occurences.

Looking carefully through the literature, we could not find, after all, any exam-
ples of hyperbolic operators with variable coefficients of order p > 2, having non-
trivial (strong) lacunas.9 The results of the present work may indicate that such
operators should possess some specific properties of algebraic and algebro-geometric
nature. The last example of this section is intended to make this observation more

8In fact, many of them were suggested by Petrovsky himself [50]. See also [11] and [24].
9 With the possible exception of powers (or products) of second order Huygens’ operators.
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precise. It reveals a clear link between the theory of lacunas and the problem of clas-
sification of (super-)complete commutative rings of partial differential operators, as
discussed in [40], [14] .

4.1. ‘Trivial’ examples. When n = 2, the Petrovsky condition (3.33) is always
true, while (3.32) is obviously not (with the exception of trivial cases, m = 0, p = 1).
This amounts to the fact that Φ±k (P, · ) is locally a polynomial outside ±W (P, ϑ)
for every P ∈ Hyp(ϑ). In view of Remark 3.5 (Section 3), Φ±(Lm, x, x0) is then
a rational function outside ±W (P, ϑ, x0) for any Lm ∈ D

G,m
Hyp , m ∈ m+ . In fact,

Φ±k (P, · ) is easily constructed by elementary calculation (see [2], p.174), and, hence,
so is Φ±(Lm, · , x0) . Many ingenious explicit formulas for the fundamental solution
of hyperbolic operators in two variables with simple dihedral symmetries can be
found in the classical work of Chaundy [16].

4.2. Wave operators. The first non-trivial examples of lacunas, both mathemat-
ically interesting and physically important, occur in the case of quadratic polyno-
mials, P ∈ Hyp◦(ϑ, 2) . Without loss of generality, we may always choose P in
the canonical form (2.10) with ϑ = (±1, 0, . . . , 0). Clearly, P ∈ Hyp(ϑ, 2)G for any
finite reflection group G ⊂ O(n− 1, 1) ∩ O(n). As in Example 3 (Section 2.2), we
may take G = G0 ×G1, where G0 ⊂ G has a rank rkG0 ≤ n− 1 and preserves the
hyperbolicity direction ϑ, while G1

∼= Z2 is a rank one subgroup of G generated by
reflection in ϑ⊥. The corresponding wave-type operators Lm ∈ D

G,m
Hyp are presented

in the form (2.16).
By the well-known result of M.Riesz [51] the kernel (2.19) can be evaluated

explicitly. Indeed, when Reλ > (n − 2)/2, the distribution Φ±λ (P, x) is identified
with a locally integrable function which vanishes outside the light cone ±K(P, ϑ)
and equals

Φ±λ (P, x) =
P (ix)λ−n/2

2π
n−2

2 4λ−1 Γ(λ) Γ(λ + 1− n/2)
(4.1)

at its interior points x ∈ ±K◦(P, ϑ). For the rest values of λ ∈ C , Φ±λ (P, · ) is
determined by analytical continuation.

It follows from (4.1) that Φ±k (P, x) never vanishes inside ±K(P, ϑ) for k ∈
Z+ , k > 0, when n is odd. On the other hand, for even dimensions, Φ±k (P, x)
is either a polynomial of degree k − n/2 (when k ≥ n/2) or identically zero (when
k < n/2) in ±K◦(P, ϑ), i.e. there is a weak and (strong) lacuna respectively.

In the latter case, by formula (2.49), we obtain Φ±(Lm) ≡ 0 in ±K◦(P, ϑ, x0)
for all m ∈ m+ such that ∑

α∈<+

mα <
n

2
− 1 .(4.2)

This result was discovered by Stellmacher [52], [53] for Coxeter groups of (splitted)
rank 1, G ∼= Z2 × · · · × Z2 , and extended to the general case in [8], [9]. The ex-
pansion of the form (2.49) in this particular case was constructed in [7]. Note that
verification of Petrovsky’s condition (3.33) offers no difficulties for P ∈ Hyp(ϑ, 2),
though it is of course unnecessary. In fact, the local methods used in [8], [9] and
based on the classical Hadamard’s construction [33] are more effective in pursuing
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the problem of lacunas for second order hyperbolic operators. However, a simi-
lar explicit approach seems hardly applicable for operators of order p ≥ 3, since
fundamental solutions in that case have more complicated singularities.

4.3. Products of wave operators. The topology of Petrovsky cycles depends
drastically on the parity of the space dimension. Indeed, let ι :

◦
V ′→

◦
V ′ , ξ 7→ −ξ,

be the antipodal involution, and let σ±(x, v; γ∼) denote a relative cycle of the
pair (V ′C \ ΞC , XC \ (XC ∩ ΞC)) associated with a given hyperbolic polynomial
P ∈ Hyp(ϑ) and some x ∈ V \ ±W (P, ϑ) (see definitions (3.15) – (3.17)). Recall
that σ±(x, v; γ∼) is provided by an orientation such that (x, ξ)ω(ξ) > 0, where ω(ξ)
is a Kronecker (n− 1)-form (3.3). In view of the absolute homogeneity of v(ξ), we
have ι (σ±(x, v; γ∼) ) = (−1)n−1σ∓(x, v; γ∼) and, hence,

ι ( ∂σ±(x, v; γ∼) ) = (−1)n−1∂σ∓(x, v; γ∼)(4.3)

for every x outside ±W (P, ϑ) and v ∈ V(x, P, ϑ). It follows from (4.3) that

∂[σ∗±(x)] = (−1)n−1∂[σ∗∓(x)] ,(4.4)

so that

∂σ∗±(x, v; γ∼) + (−1)n−1∂σ∗∓(x, v; γ∼) ∈ 2 ∂[σ∗±(x)](4.5)

for all x ∈ V \ ±W (P, ϑ) . The relation (4.5) provides some interesting examples
when Petrovsky’s condition (3.33) holds automatically.

Suppose that a hyperplane X ⊂ V ′ dual to some point x ∈ V \±W (P, ϑ) meets
the real characteristic surface Ξ(P ) , P ∈ Hyp(ϑ), only at the origin in V ′. Then,
we may choose a vector field v(ξ) ∈ V(x, P, ϑ) in the definition of σ±(x, v; γ∼)

in such a way that v = 0 in some small conical neighborhood of
◦
X ⊂

◦
V ′, and,

hence, ∂σ±(x, v; γ∼) = ∂σ∓(x, v; γ∼) in that case. When n is even, this implies the
vanishing of ∂[σ∗±(x)] in view of (4.5) :

X ∩ Ξ = {0} ⇒ ∂[σ∗±(x)] = 0 in Hn−2(X∗C \ (X∗C ∩ Ξ∗C) ; C) .(4.6)

The condition (4.6) applies to the product of wave polynomials with different light
velocities. Indeed, put

P (ζ) :=
l∏

k=1

(
−(ζ1/ck)2 + (ζ2)2 + · · ·+ (ζn)2

)
,(4.7)

where 0 < c1 ≤ c2 ≤ · · · ≤ cl−1 ≤ cl are arbitrary real constants. Then, P (ζ)
is both hyperbolic in direction ϑ = (±1, 0, . . . , 0), and invariant with respect to
any group G generated by reflections preserving this direction. The corresponding
operators Lm ∈ D

G,m
Hyp are written in the form

Lm =
l∏

k=1

 1
c2k

∂2

∂x2
1

− ∂2

∂x2
2

− · · · − ∂2

∂x2
n

+
∑
α∈<+

mα(mα + 1)(α, α)
(α, x)2

 .(4.8)

The wave front surface ±W (P, ϑ) consists of l telescoping conics and splits the
space V into 2l+ 1 connected components, one of them being the outer component
V \±K(P, ϑ) and one being the ‘most inner’ convex cone±Kin(P, ϑ) inside±K(P, ϑ).
It is easy to see that

◦
X ∩Ξ is empty for every point x ∈ ±Kin(P, ϑ) . Hence, when

n is even, the condition (4.6) holds for these points. By Corollary 3.3, we conclude
that any open subset L±(x0) in ±Kin(P, ϑ, x0) lying outside the fixed singularity
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Figure 2. Petrovsky’s example I

locus
⋃
α⊥ , α ∈ < , is a regular strong lacuna of the operator (4.8), provided n is

even, and ∑
α∈<+

mα <
n

2l
− 1 .(4.9)

Note that, when the ck are all distinct, the polynomial (4.7) is strongly hyper-
bolic. In that case, we may generalize example (4.7). Indeed, let n , p both be even,
and assume that P ∈ Hyp◦(ϑ) is strongly hyperbolic. If every part of Ξ(P ) bounds
a convex cone in V ′, then (4.6) still applies and Petrovsky’s condition (3.33) holds
for any x inside the ‘most inner’ component ±Kin(P, ϑ) of ±K(P, ϑ). This result
was already known to Petrovsky ([50], p. 345). A simple proof based on Gel´fand’s
version [29] of the Herglotz-Petrovsky formulas can be found in [11].

The existence of lacuna in the ‘most inner’ component of the propagation cone
implies the absence of wave diffusion, a phenomenon which, according to [50], may
be viewed as an analog of Huygens’ principle for higher order hyperbolic operators.
A detailed study of the Cauchy problem for the operators (4.7) has been carried
out in [24]. Simple geometric arguments used here to show (4.6) are essentially due
to [2].

4.4. Petrovsky’s examples. As shown in [3], the validity of Petrovsky’s condition
(3.33) in even dimensions n > 2 amounts to the fact that the real intersection
Ξ∗ ∩ X∗ ⊂ RPn−1 of the projective algebraic surface Ξ∗ with a hyperplane X∗

is homologous to zero in their complex intersection Ξ∗C ∩ X∗C ⊂ CPn−1 , at least
when the latter has no singular points. Condition (4.6) is a trivial manifestation of
this situation. Petrovsky ([50], pp. 349–350) constructed the following non-trivial
example when p = 4.

Consider a real hyperbola H(ξ, η) = 0 located in the coordinate plane (ξ, η)
as shown in Fig. 2(a). It meets a positive horizontal semi-axis at two distinct
points while touching the vertical one at some point (0, η0) , η0 > 0 . We assume
H(0, 0) < 0 .

The homogeneous polynomial defined by

(4.10) P (ζ) := ζ4
n [H( (ζ1/ζn)2 + · · ·+ (ζn−2/ζn)2 , (ζn−1/ζn)2 )− b ε3 ]

− ε ζn−1 ζn (ζ2
1 + · · ·+ ζ2

n−3 − ζ2
n−2) + a ε2 (ζ2

1 + · · ·+ ζ2
n−3 − ζ2

n−2)2
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ξ

η

O

l

Figure 3. Petrovsky’s example II

is strongly hyperbolic, when a, b and ε are sufficiently small (positive or negative)
real constants. Then, the projective surface Ξ∗ characteristic to (4.10) consists
of two non-intersecting ovals embedded one into another with no singular points.
Petrovsky showed that a real intersection of Ξ∗ with a hyperplane X∗ : ζn−1 = 0
is homologous to zero in Ξ∗C ∩ X∗C. (When n = 4, the surface Ξ∗ ∩ X∗ consists
of four properly oriented ovals in RP2 shown schematically in Fig. 2(b) .) In even
dimensions n ≥ 4, this implies the validity of (3.33) for the component of±K(P, ϑ)\
±W (P, ϑ) containing the point x ∈ V dual to X∗.

The polynomial (4.10) is invariant under any reflection group acting in the space
of variables (ζ1, . . . , ζn−3). For every such group G the hyperbolic operators Lm ∈
D
G,m
Hyp with (4.10) as a principal symbol may have regular lacunas L±(x0) in the

component of ±K(P, ϑ, x0) \±W (P, ϑ, x0) which contains the point x dual to X .
By Corollary 3.3, this happens when m ∈ m+ , n ≥ 4 is even, and∑

α∈<+

mα <
n

4
− 1 .(4.11)

The relation (3.33) may be valid not only in even but in odd dimensions as
well. The following sufficient condition is due to Atiyah, Bott and G̊arding (see [2],
Theorem 6.27).

Let n ≥ 3 be odd and let Px be the restriction of P ∈ Hyp(ϑ) to a hyperplane
XC ⊂ V ′C . If x 6∈ ±W (P, ϑ) and there is a ϑx ∈ X such that Px ∈ Hyp(ϑx) and
at least one of the sets ±Γξ(Px, ϑx) ∩ Γξ(P, ϑ) is never empty for ξ ∈ ◦X , then the
Petrovsky condition holds. The proof of this result is based on another example
suggested by Petrovsky ([50], p. 348). Consider an ellipse H(ξ, η) = 0 in the
coordinate plane (ξ, η), crossing both (positive) semi-axes at two distinct points
(see Fig. 3), and define the following polynomial:

P (ζ) := ζ4
nH

(
(ζ1/ζn)2 + · · ·+ (ζn−2/ζn)2 , (ζn−1/ζn)2

)
.(4.12)

The characteristic surface Ξ∗ of P consists of two real ovals contained in one another,
and P (ζ) is hyperbolic with regard to any ϑ∗ in Γ∗, the domain bounded by the
inner oval. Let X∗ be a hyperplane produced by revolving a line l around the
ζn−1-axis. The intersection Ξ∗ ∩ X∗ consists of two ovals in one another, the
restriction Px being hyperbolic with respect to ϑ∗x, a point inside the smaller of
them. It is not difficult to see that ±Γ∗ξ(P, ϑ) ∩ X∗ are all at least half-spaces
for ξ ∈ X , and then, by the convexity of Γ∗ξ(Px, ϑx) in X∗, at least one of the
sets ±Γ∗ξ(Px, ϑx) ∩ Γ∗ξ(P, ϑ) is never empty. When n ≥ 3 is odd, this implies the
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validity of (3.33) inside the components L± containing the point x ∈ ±W (P, ϑ)
dual to X∗. The Petrovsky polynomial P (ζ) is invariant under any reflection group
G acting in the space of variables (ζ1, . . . , ζn−2) , and hence the related operators
Lm ∈ D

G,m
Hyp possess non-trivial lacunas L±(x0) when n is odd and (4.11) holds.

4.5. Irregular lacunas and the strong Huygens’ principle. The absence of
diffusion of waves is one possible generalization of Huygens’ principle to higher order
hyperbolic operators, p > 2. In the case of constant coefficients this phenomenon
has a purely topological nature.

Another analog of this notion (which is apparently related to differential opera-
tors with specific algebraic properties, e. g., with a large symmetry group) consists
in the fact that the support of Φ(L, · ) may fill a part of some (real) surface S of
positive codimension codimS ≥ 1 in V . For L = P (D), P ∈ Hyp◦(ϑ), such a
situation never happens, with the sole exception of wave operators (0.1) in even
dimensions, n ≥ 4 (see [11]). However, there are examples ([25], [55]) with multiple
characteristics (p > 2) when Huygens’ principle may hold even in the stronger form:
codim supp Φ(L, · ) > 1. This corresponds to occurence of irregular lacunas in the
propagation cone of L (see Remark 3.7, Section 3).

Here, we give an example of a hyperbolic operator with variable coefficients which
satisfies the strong Huygens’ principle.

Let V =
⊕

Vj , j = 0, 1, 2, with dimV0 = 3 , dimV1 = n1 , dimV2 = n2 , n1,2 >
0, and consider the following polynomial P (ζ) ∈ C[V ′]

P (ζ) := ζ01 ζ02 ζ03 −
1
4
ζ02 (ζ2

11 + ζ2
12 + · · ·+ ζ2

1n1
)

− 1
4
ζ01 (ζ2

21 + ζ2
22 + · · ·+ ζ2

2n2
) ,

(4.13)

written in some fixed coordinate bases {ζjk}njk=1 in V ′j
∼= Vj , j = 0, 1, 2. It is easy

to see that (4.13) is hyperbolic with hyperbolicity cone

Γ(P, · ) := { ζ ∈ V ′ | P (ζ) > 0 , ζ01 > 0 , ζ02 > 0 }(4.14)

and the propagation cone

K(P, · ) := { x ∈ V | Q1(x) ≥ 0 , Q2(x) ≥ 0 , x03 ≥ 0 } ,(4.15)

where Q1(x) := x01x03 −
∑n1

k=1 x
2
1k , Q2(x) := x02x03 −

∑n2
k=1 x

2
2k.

The study of the support structure of the kernel Φλ(L, · ) can be carried out
along the same lines as in [55]. It turns out that when n1 and n2 are both even
and k ≤ 1

2 min(n1, n2) is a positive integer, k ∈ Z+, supp Φk(P, · ) constitutes a
(semi-)algebraic surface in V defined by

S0 := { x ∈ V | Q1(x) = 0 , Q2(x) = 0 , x03 ≥ 0 } .
Take G = G1 × G2 ⊂ O(V ), a direct product of finite reflection groups G1 ⊂

O(V1) and G2 ⊂ O(V2) respectively, rkG ≤ n1 + n2, and define

Lm := P (D) +
i

4

 ∑
α∈<1+

mα(mα + 1)(α, α)
(α, x)2

 ∂

∂x02

+
i

4

 ∑
β∈<2+

mβ(mβ + 1)(β, β)
(β, x)2

 ∂

∂x01

(4.16)

with <1 := <(G1), <2 := <(G2) and m ∈M(G).
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It follows from Theorem 2.17 that

supp Φ(Lm) ⊆ Sx0 := { x ∈ V | Q1(x− x0) = 0 , Q2(x − x0) = 0,

x03 − x0
03 ≥ 0 } ,

when m ∈ m+, n1, n2 are even and∑
α∈<1+

mα +
∑

β∈<2+

mβ <
1
2

min(n1, n2)− 1 .(4.17)

Thus, for (4.16) Huygens’ principle holds in the strong form.

4.6. Closing remarks. In the present paper we have studied a class D
G,m
Hyp of

hyperbolic differential operators with singular coefficients for which fundamental
solutions can be constructed explicitly in terms of Herglotz-Petrovsky-Leray type
Abelian integrals (Theorem 3.2). The structure of these integral formulas allows
the existence of non-trivial (strong) lacunas, provided the Petrovsky topological
condition holds for the symbol. For any (fixed) m ∈M(G) , D

G,m
Hyp is embedded in

a commutative ring of partial differential operators DG,m isomorphic to the free
C-algebra of G-invariant polynomials C[V ′]G (cf. Theorem 1.7). It turns out that
in case of integer multiplicities, m ∈ m+, DG,m admits a non-trivial commutative
extension DG,m → DG,m

∼ isomorphic to the ring C[V ′]G∼ of quasi-invariants of the
Coxeter group G, the latter being defined by (see [14])

C[V ′]G∼ := {P ∈ C[V ′] | ∂αP = ∂3
αP = · · · = ∂2mα−1

α P = 0 on (α, ζ) = 0 , α ∈ <} .

Note that C[V ′]G∼ is a supercomplete ring in the sense that the (minimal) number
of generators of C[V ′]G∼ (as a C-algebra) exceeds its (Krull) dimension n = dim V .

Algebraically, the existence of extra non-invariant differential operators in the
centralizer Z(DG,m) of DG,m in D is closely related to the existence of lacunary
hyperbolic operators in D

G,m
Hyp .

To make this observation precise, we will construct one such operator explicitly
by evaluating the Riesz kernel of a specificG-invariant hyperbolic operator in DG,m

at a non-trivial singular point λ ∈ C (for more details see [4]).
Let P (ζ) =

∏
α∈<(α, ζ) be a discriminant of a Coxeter group G. As discussed

in Example 2.9 (Section 2.2), P (ζ) ∈ Hyp(ϑ)G with ϑ ∈ Γ+(G). Define Lm :=
Res∇mP (ζ) ∈ D

G,m
Hyp for m ∈ m+. According to Theorem 2.17, Lm is properly

hyperbolic and its Riesz kernel is given by formula (2.48).
When λ ∈ −M − 1

2Z+ , the distribution Φλ(Lm, x, x0) has a point support
supp Φλ(Lm, · , x0) = {x0}, and hence there is a (degenerate) regular lacuna inside
K(P, x, x0). It follows from (2.48) that Φλ(Lm, x, x0) = Lλm[δ(x − x0)] for λ ∈
−M − Z+ , and

Φλ(Lm) =
M∑
k=0

(−1)k
(λ)k
k!

adk(Lm,L0)[Θm(x)]π(D)−2k−2λ[δ(x − x0)](4.18)

for λ ∈ −M − 1
2 Z

odd
+ , where π(D) :=

∏
α∈<+

(α,D) .
The differential operator

L̃m :=
M∑
k=0

(−1)k
(−M − 1/2)k

k!
adk(Lm,L0)[θm(x)]π(D)2(M−k)+1 θm(x)−1(4.19)
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associated with the integral kernel (4.18) has a skew-invariant principal symbol
π(ζ)2M+1, while commuting with any element in DG,m. Indeed, by the uniqueness
of the Riesz kernel Φλ(Lm, x, x0), we have the duality property

Q[Φλ(Lm, · , x0)](x) = Q∗[Φλ(Lm, x, · )](x0)(4.20)

for any Q ∈ D commuting with Lm. For singular values λ ∈ −M − 1
2 Z+ , equation

(4.20) boils down to the necessary commutativity relation [L̃m , Q] = 0. Thus,
L̃m ∈ Z(DG,m) \DG,m .

With regard to the above example, it seems tempting to adopt some (possi-
bly, very tentative) hypothesis on algebro-geometric characterization of lacunary
hyperbolic operators with variable coefficients.

Conjecture 4.1. Let L := P (D)+
∑

aν(x)Dν be a hyperbolic differential operator
defined in some open part Ω ⊂ V with a constant principal symbol P ∈ Hyp(ϑ)
and smooth lower order coefficients aν(x) ∈ C∞(Ω). Suppose that Φ(L, · , x0) has
a non-trivial (strong) lacuna inside K(P, ϑ, x0) at every x0 ∈ Ω. Then, there exists
a commutative ring DL of partial differential operators such that L ∈ DL, and DL
is isomorphic to some supercomplete subalgebra in C[V ′] .

In the case of second order wave-type operators this conjecture has been verified
for all known classes of lacunary (i.e., Huygens) operators (see [10], [9], [5], [59]).
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